Show simple item record

dc.contributor.authorAzzouz, Lyes
dc.contributor.authorCHEN, Yong Kang
dc.contributor.authorZarrelli, Mauro
dc.contributor.authorPearce, Joshua M.
dc.contributor.authorMitchell, Leslie
dc.contributor.authorRen, Guogang
dc.contributor.authorGrasso, Marzio
dc.date.accessioned2019-02-02T01:19:09Z
dc.date.available2019-02-02T01:19:09Z
dc.date.issued2019-04-01
dc.identifier.citationAzzouz , L , CHEN , Y K , Zarrelli , M , Pearce , J M , Mitchell , L , Ren , G & Grasso , M 2019 , ' Mechanical properties of 3-D printed truss-like lattice biopolymer non-stochastic structures for sandwich panels with natural fibre composite skins ' , Composite Structures , vol. 213 , pp. 220-230 . https://doi.org/10.1016/j.compstruct.2019.01.103
dc.identifier.issn0263-8223
dc.identifier.otherORCID: /0000-0001-8865-1526/work/62749459
dc.identifier.urihttp://hdl.handle.net/2299/21029
dc.description© 2019 Elsevier Ltd. All rights reserved.
dc.description.abstractA full mechanical characterisation of three types of 3-D printed lattice cores was performed to evaluate the feasibility of using additive manufacturing (AM) of lightweight polymer-based sandwich panels for structural applications. Effects of the shape of three selected lattice structures on the compression, shear and bending strength has been experimentally investigated. The specimens tested were manufactured with an open source fused filament fabrication-based 3-D printer. These sandwich structures considered had skins made of polypropylene (PP)-flax bonded to the polylactic acid (PLA) lattice structure core using bi-component epoxy adhesive. The PP-flax and the PLA core structures were tested separately as well as bonded together to evaluate the structural performance as sandwich panels. The compression tests were carried out to assess the in-plane and out of plane stiffness and strength by selecting a representative number of cells. Shear band and plastic hinges were observed during the in-plane tests. The shear and three-point bending tests were performed according to the standard to ensure repeatability. The work has provided an insight into the failure modes of the different shapes, and the force-displacement history curves were linked to the progressive failure mechanisms experienced by the structures. Overall, the results of the three truss-like lattice biopolymer non-stochastic structures investigated have indicated that they are well suited to be used for potential impact applications because of their high-shear and out of the plane compression strength. These results demonstrate the feasibility of AM technology in manufacturing of lightweight polymer-based sandwich panels for potential structural usesen
dc.format.extent11
dc.format.extent1812864
dc.language.isoeng
dc.relation.ispartofComposite Structures
dc.subjectBiopolymers
dc.subjectLattice structures
dc.subjectNatural fibre composites
dc.subjectPLA
dc.subjectSandwich structure
dc.subjectStochastic structures
dc.subjectCeramics and Composites
dc.subjectCivil and Structural Engineering
dc.titleMechanical properties of 3-D printed truss-like lattice biopolymer non-stochastic structures for sandwich panels with natural fibre composite skinsen
dc.contributor.institutionEnergy and Sustainable Design Research Group
dc.contributor.institutionCentre for Engineering Research
dc.contributor.institutionSchool of Engineering and Technology
dc.contributor.institutionBioEngineering
dc.contributor.institutionMaterials and Structures
dc.description.statusPeer reviewed
dc.date.embargoedUntil2021-01-30
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85060845270&partnerID=8YFLogxK
rioxxterms.versionofrecord10.1016/j.compstruct.2019.01.103
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record