University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Effect of electric load and dual atmosphere on the properties of an alkali containing diopside-based glass sealant for solid oxide cells

        View/Open
        Final Accepted Version (PDF, 676Kb)(embargoed until 24/01/2021)
        Author
        Sabato, Antonio G.
        Rost, Axel
        Schilm, Jochen
        Kusnezoff, Mihails
        Salvo, Milena
        Chrysanthou, Andreas
        Smeacetto, Federico
        Attention
        2299/21039
        Abstract
        A new alkali-containing diopside based glass-ceramic sealant for solid oxide cells was synthesized, characterized and tested. The composition was designed to match the coefficient of thermal expansion (CTE) of Crofer22APU interconnect. The sealant has a glass transition temperature of 600°C, a crystallization peak temperature of 850°C and a maximum shrinkage temperature of 700°C, thus suggesting effective densification prior to crystallization. The CTE of the glass-ceramic is 11.5 10-6 K-1, a value which is compatible with the CTE for Crofer22APU stainless steel. Crofer22APU/glass-ceramic/Crofer22APU joined samples were tested in simulated real-life operating conditions at 800°C in dual atmosphere under an applied voltage, monitoring the electrical resistivity. The effect of two different applied voltages (0.7V and 1.3V) was evaluated. A voltage of 1.3V led to a rapid decrease in the electrical resistivity during the test;such a drop was due to the formation of Cr2O3 “bridges” that connected the two Crofer22APU plates separated by the sealant. There was no decrease in the resistivity when a voltage of 0.7V was applied. Instead,resistivity value remained stable at around 105 Ω cm for the 100h test duration. The degradation mechanisms, due to both the alkali content and the applied voltage, are investigated and discussed.
        Publication date
        2019-03-01
        Published in
        Journal of Power Sources
        Published version
        https://doi.org/10.1016/j.jpowsour.2019.01.051
        License
        http://creativecommons.org/licenses/by-nc-nd/4.0/
        Other links
        http://hdl.handle.net/2299/21039
        Relations
        School of Engineering and Technology
        Metadata
        Show full item record
        Keep in touch

        © 2018 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan