University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Transfer learning for galaxy morphology from one survey to another

        View/Open
        SK_AAM.pdf (PDF, 1Mb)
        Author
        Sánchez, H. Domínguez
        Huertas-Company, M.
        Bernardi, M.
        Kaviraj, S.
        Fischer, J. L.
        Abbott, T. M. C.
        Abdalla, F. B.
        Annis, J.
        Avila, S.
        Buckley-Geer, E.
        Rosell, A. Carnero
        Kind, M. Carrasco
        Carretero, J.
        Cunha, C. E.
        D'Andrea, C. B.
        Costa, L. N. da
        Davis, C.
        Vicente, J. De
        Doel, P.
        Evrard, A. E.
        Fosalba, P.
        Frieman, J.
        García-Bellido, J.
        Gaztanaga, E.
        Gerdes, D. W.
        Gruen, D.
        Gruendl, R. A.
        Gschwend, J.
        Gutierrez, G.
        Hartley, W. G.
        Hollowood, D. L.
        Honscheid, K.
        Hoyle, B.
        Kuehn, K.
        Kuropatkin, N.
        Lahav, O.
        Maia, M. A. G.
        March, M.
        Melchior, P.
        Menanteau, F.
        Miquel, R.
        Nord, B.
        Plazas, A. A.
        Sanchez, E.
        Scarpine, V.
        Schindler, R.
        Schubnell, M.
        Soares-Santos, M.
        Sobreira, F.
        Suchyta, E.
        Swanson, M. E. C.
        Tarle, G.
        Walker, A. R.
        Zuntz, J.
        Attention
        2299/21049
        Abstract
        Deep Learning (DL) algorithms for morphological classification of galaxies have proven very successful, mimicking (or even improving) visual classifications. However, these algorithms rely on large training samples of labelled galaxies (typically thousands of them). A key question for using DL classifications in future Big Data surveys is how much of the knowledge acquired from an existing survey can be exported to a new dataset, i.e. if the features learned by the machines are meaningful for different data. We test the performance of DL models, trained with Sloan Digital Sky Survey (SDSS) data, on Dark Energy survey (DES) using images for a sample of $\sim$5000 galaxies with a similar redshift distribution to SDSS. Applying the models directly to DES data provides a reasonable global accuracy ($\sim$ 90%), but small completeness and purity values. A fast domain adaptation step, consisting in a further training with a small DES sample of galaxies ($\sim$500-300), is enough for obtaining an accuracy > 95% and a significant improvement in the completeness and purity values. This demonstrates that, once trained with a particular dataset, machines can quickly adapt to new instrument characteristics (e.g., PSF, seeing, depth), reducing by almost one order of magnitude the necessary training sample for morphological classification. Redshift evolution effects or significant depth differences are not taken into account in this study.
        Publication date
        2018-12-28
        Published in
        Monthly Notices of the Royal Astronomical Society
        Published version
        https://doi.org/10.1093/mnras/sty3497
        Other links
        http://hdl.handle.net/2299/21049
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan