Show simple item record

dc.contributor.authorCescutti, G.
dc.contributor.authorHirschi, R.
dc.contributor.authorNishimura, N.
dc.contributor.authorden Hartogh, J. W.
dc.contributor.authorRauscher, T.
dc.contributor.authorMurphy, A. St J.
dc.contributor.authorCristallo, S.
dc.date.accessioned2019-03-05T11:21:29Z
dc.date.available2019-03-05T11:21:29Z
dc.date.issued2018-08-21
dc.identifier.citationCescutti , G , Hirschi , R , Nishimura , N , den Hartogh , J W , Rauscher , T , Murphy , A S J & Cristallo , S 2018 , ' Uncertainties in s-process nucleosynthesis in low-mass stars determined from Monte Carlo variations ' , Monthly Notices of the Royal Astronomical Society , vol. 478 , no. 3 , pp. 4101-4127 . https://doi.org/10.1093/MNRAS/STY1185
dc.identifier.issn0035-8711
dc.identifier.urihttp://hdl.handle.net/2299/21172
dc.description© 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
dc.description.abstractThe main s-process taking place in low-mass stars produces about half of the elements heavier than iron. It is therefore very important to determine the importance and impact of nuclear physics uncertainties on this process. We have performed extensive nuclear reaction network calculations using individual and temperature-dependent uncertainties for reactions involving elements heavier than iron, within a Monte Carlo framework. Using this technique, we determined the uncertainty in the main s-process abundance predictions due to nuclear uncertainties linked to weak interactions and neutron captures on elements heavier than iron. We also identified the key nuclear reactions dominating these uncertainties. We found that β-decay rate uncertainties affect only a few nuclides near s-process branchings, whereas most of the uncertainty in the final abundances is caused by uncertainties in neutron-capture rates, either directly producing or destroying the nuclide of interest. Combined total nuclear uncertainties due to reactions on heavy elements are in general small (less than 50 per cent). Three key reactions, nevertheless, stand out because they significantly affect the uncertainties of a large number of nuclides. These are 56Fe(n,γ), 64Ni(n,γ), and 138Ba(n,γ). We discuss the prospect of reducing uncertainties in the key reactions identified in this study with future experiments.en
dc.format.extent27
dc.format.extent4220373
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society
dc.subjectAbundances
dc.subjectNuclear reactions
dc.subjectNucleosynthesis
dc.subjectStars: abundances
dc.subjectStars: AGB and post-AGB
dc.subjectStars: evolution
dc.subjectStars: low-mass
dc.subjectAstronomy and Astrophysics
dc.subjectSpace and Planetary Science
dc.titleUncertainties in s-process nucleosynthesis in low-mass stars determined from Monte Carlo variationsen
dc.contributor.institutionCentre for Astrophysics Research
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85060879330&partnerID=8YFLogxK
rioxxterms.versionofrecord10.1093/MNRAS/STY1185
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record