University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Physicochemical characterisation of inhalation grade lactose after the removal of intrinsic fines

        View/Open
        39.Styliari.poster.pdf (PDF, 522Kb)
        Author
        Styliari, Ioanna Danai
        Mobli, Arian
        Murnane, Darragh
        Attention
        2299/21247
        Abstract
        Lactose is a common excipient in Dry Powder Inhaler (DPI) formulations, used as a carrier for the micronized drug particles. The presence of intrinsic lactose fines in the formulation influences its performance and their role and interactions between the lactose carrier and the micronized drug is still not fully understood. As a first step towards this investigation, “clean” lactose, with removed fines, was produced via wet decantation. Ethanol and isopropyl alcohol have been used in wet decantation, successfully removing lactose fines from the surface of the coarse particles. Differential Scanning Calorimetry (DSC) was employed to show that the powders maintained their crystalline character. Scanning Electron Microscopy (SEM) showed tomahawk-shaped particles in all the powders and some surface alteration occurring after decantation. An airflow titration method using laser diffraction (LDA) allowed the estimation of the removal of fines as well as the particle size distributions, while the non-polar and the polar components of the surface energy of the powders were calculated via Inverse Gas Chromatography-Surface Energy Analysis (iGC-SEA). As both solvents successfully removed fines, we propose the addition of isopropyl alcohol in the list of organic solvents suitable for this purpose.
        Publication date
        2018-12-14
        Other links
        http://hdl.handle.net/2299/21247
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan