Show simple item record

dc.contributor.authorDale, James E.
dc.contributor.authorKruijssen, J. M. Diederik
dc.contributor.authorLongmore, S. N.
dc.date.accessioned2019-05-14T14:05:15Z
dc.date.available2019-05-14T14:05:15Z
dc.date.issued2019-04-02
dc.identifier.citationDale , J E , Kruijssen , J M D & Longmore , S N 2019 , ' The dynamical evolution of molecular clouds near the Galactic Centre -- III. Tidally--induced star formation in protocluster clouds ' , Monthly Notices of the Royal Astronomical Society , vol. 486 , no. 3 , pp. 3307–3326 . https://doi.org/10.1093/mnras/stz888
dc.identifier.issn0035-8711
dc.identifier.otherPURE: 16711252
dc.identifier.otherPURE UUID: ccea16b1-9bcd-4760-863e-6bdebcb70930
dc.identifier.otherArXiv: http://arxiv.org/abs/1903.10617v1
dc.identifier.otherScopus: 85068960011
dc.identifier.otherORCID: /0000-0001-5252-5771/work/62751071
dc.identifier.urihttp://hdl.handle.net/2299/21329
dc.description© 2019 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.
dc.description.abstractAs part of a series of papers aimed at understanding the evolution of the Milky Way's Central Molecular Zone (CMZ), we present hydrodynamical simulations of turbulent molecular clouds orbiting in an accurate model of the gravitational potential extant there. We consider two sets of model clouds differing in the energy content of their velocity fields. In the first, self-virialized set, the turbulent kinetic energies are chosen to be close in magnitude to the clouds' self-gravitational potential energies. Comparison with isolated clouds evolving without an external potential shows that the self-virialized clouds are unable to withstand the compressive tidal field of the CMZ and rapidly collapse, forming stars much faster and reaching gas exhaustion after a small fraction of a Galactocentric orbit. In the second, tidally virialized, set of simulations, the clouds' turbulent kinetic energies are in equilibrium with the external tidal field. These models are better supported against the field and the stronger turbulence suppresses star formation. Our results strongly support the inference that anomalously low star formation rates in the CMZ are due primarily to high velocity dispersions in the molecular gas. The clouds follow open, eccentric orbits oscillating in all three spatial coordinates. We examine the consequences of the orbital dynamics, particularly pericentre passage, by performing companion simulations of clouds on circular orbits. The increased tidal forces at pericentre produce transient accelerations in star formation rates of at most a factor of 2.7. Our results demonstrate that modelling star formation in galactic centres requires the inclusion of tidal forces.en
dc.format.extent20
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society
dc.rightsOpen
dc.subjectastro-ph.GA
dc.subjectstars: formation
dc.subjectGalaxy: centre
dc.subjectISM: evolution
dc.subjectgalaxies: ISM
dc.subjectISM: kinematics and dynamics
dc.subjectISM: clouds
dc.subjectAstronomy and Astrophysics
dc.subjectSpace and Planetary Science
dc.titleThe dynamical evolution of molecular clouds near the Galactic Centre -- III. Tidally--induced star formation in protocluster cloudsen
dc.contributor.institutionCentre for Astrophysics Research
dc.contributor.institutionSchool of Physics, Astronomy and Mathematics
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85068960011&partnerID=8YFLogxK
dc.description.versiontypeFinal Accepted Version
dcterms.dateAccepted2019-04-02
rioxxterms.versionAM
rioxxterms.versionofrecordhttps://doi.org/10.1093/mnras/stz888
rioxxterms.licenseref.uriOther
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue
herts.rights.accesstypeOpen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record