University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        The Potential for Student Performance Prediction in Small Cohorts with Minimal Available Attributes

        View/Open
        The_potential_for_student_performance_prediction_in_small_cohorts.pdf (PDF, 812Kb)
        Author
        Wakelam, Ed
        Jefferies, Amanda
        Davey, Neil
        Sun, Yi
        Attention
        2299/21474
        Abstract
        The measurement of student performance during their progress through university study provides academic leadership with critical information on each student’s likelihood of success. Academics have traditionally used their interactions with individual students through class activities and interim assessments to identify those “at risk” of failure/withdrawal. However, modern university environments, offering easy on-line availability of course material, may see reduced lecture/tutorial attendance, making such identification more challenging. Modern data mining and machine learning techniques provide increasingly accurate predictions of student examination assessment marks, although these approaches have focussed upon large student populations and wide ranges of data attributes per student. However, many university modules comprise relatively small student cohorts, with institutional protocols limiting the student attributes available for analysis. It appears that very little research attention has been devoted to this area of analysis and prediction. We describe an experiment conducted on a final-year university module student cohort of 23, where individual student data are limited to lecture/tutorial attendance, virtual learning environment accesses and intermediate assessments. We found potential for predicting individual student interim and final assessment marks in small student cohorts with very limited attributes and that these predictions could be useful to support module leaders in identifying students potentially “at risk.”.
        Publication date
        2019-06-25
        Published in
        British Journal of Educational Technology
        Published version
        https://doi.org/10.1111/bjet.12836
        Other links
        http://hdl.handle.net/2299/21474
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan