University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        The formation and evolution of low-surface-brightness galaxies

        View/Open
        Final Published version (PDF, 3Mb)
        Author
        Martin, G.
        Kaviraj, S.
        Laigle, C.
        Devriendt, J. E. G.
        Jackson, R. A.
        Peirani, S.
        Dubois, Y.
        Pichon, C.
        Slyz, A.
        Attention
        2299/21528
        Abstract
        Our statistical understanding of galaxy evolution is fundamentally driven by objects that lie above the surface-brightness limits of current wide-area surveys (μ ∼23 mag arcsec -2). While both theory and small, deep surveys have hinted at a rich population of low-surface-brightness galaxies (LSBGs) fainter than these limits, their formation remains poorly understood. We use Horizon-AGN, a cosmological hydrodynamical simulation to study how LSBGs, and in particular the population of ultra-diffuse galaxies (UDGs; μ > 24.5 mag arcsec -2), form and evolve over time. For M∗> 108, M⊙, LSBGs contribute 47, 7, and 6 per cent of the local number, mass, and luminosity densities, respectively (∼85/11/10 per cent for M∗> 107 M⊙). Today's LSBGs have similar dark-matter fractions and angular momenta to high-surface-brightness galaxies (HSBGs; μ < 23 mag arcsec -2), but larger effective radii (×2.5 for UDGs) and lower fractions of dense, star-forming gas (more than ×6 less in UDGs than HSBGs). LSBGs originate from the same progenitors as HSBGs at z > 2. However, LSBG progenitors form stars more rapidly at early epochs. The higher resultant rate of supernova-energy injection flattens their gas-density profiles, which, in turn, creates shallower stellar profiles that are more susceptible to tidal processes. After z ∼1, tidal perturbations broaden LSBG stellar distributions and heat their cold gas, creating the diffuse, largely gas-poor LSBGs seen today. In clusters, ram-pressure stripping provides an additional mechanism that assists in gas removal in LSBG progenitors. Our results offer insights into the formation of a galaxy population that is central to a complete understanding of galaxy evolution, and that will be a key topic of research using new and forthcoming deep-wide surveys.
        Publication date
        2019-05-01
        Published in
        Monthly Notices of the Royal Astronomical Society
        Published version
        https://doi.org/10.1093/mnras/stz356
        License
        http://creativecommons.org/licenses/by/4.0/
        Other links
        http://hdl.handle.net/2299/21528
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan