Show simple item record

dc.contributor.authorMensah, Rosemond
dc.contributor.authorKirton, Stewart
dc.contributor.authorCook, Michael T.
dc.contributor.authorStyliari, Ioanna Danai
dc.contributor.authorHutter, Victoria
dc.contributor.authorChau, David
dc.date.accessioned2019-10-25T00:12:01Z
dc.date.available2019-10-25T00:12:01Z
dc.date.issued2019-09-26
dc.identifier.citationMensah , R , Kirton , S , Cook , M T , Styliari , I D , Hutter , V & Chau , D 2019 , ' Optimising poly(lactic-co-glycolic acid) microparticle fabrication using a Taguchi orthogonal array design-of-experiment approach ' , PLoS ONE , vol. 14 , no. 9 , e0222858 , pp. e0222858 . https://doi.org/10.1371/journal.pone.0222858
dc.identifier.issn1932-6203
dc.identifier.otherORCID: /0000-0002-7476-2994/work/64003665
dc.identifier.urihttp://hdl.handle.net/2299/21795
dc.description© 2019 Mensah et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
dc.description.abstractThe objective of this study was to identify, understand and generate a Taguchi orthogonal array model for the formation of 10–50 μm microparticles with applications in topical/ocular controlled drug delivery. Poly(lactic-co-glycolic acid) (PLGA) microparticles were fabricated by the single emulsion oil-in-water method and the particle size was characterized using laser diffraction and scanning electronic microscopy (SEM). Sequential Taguchi L 12 and L 18 orthogonal array (OA) designs were employed to study the influence of ten and eight parameters, respectively, on microparticle size (response). The first optimization step using the L 12 design showed that all parameters significantly influenced the particle size of the prepared PLGA microparticles with exception of the concentration of poly(vinyl alcohol) (PVA) in the hardening bath. The smallest mean particle size obtained from the L 12 design was 54.39 μm. A subsequent L 18 design showed that the molecular weight of PLGA does not significantly affect the particle size. An experimental run comprising of defined parameters including molecular weight of PLGA (89 kDa), concentration of PLGA (20% w/v), concentration of PVA in the emulsion (0.8% w/v), solvent type (ethyl acetate), organic/aqeuous phase ratio (1:1 v/v), vortexing speed (9), vortexing duration (60 seconds), concentration of PVA in hardening bath (0.8% w/v), stirring speed of hardening bath (1200 rpm) and solvent evaporation duration (24 hours) resulted in the lowest mean particle size of 23.51 μm which was predicted and confirmed by the L 18 array. A comparable size was demonstrated during the fabrication of BSA-incorporated microparticles. Taguchi OA design proved to be a valuable tool in determining the combination of process parameters that can provide the optimal condition for microparticle formulation. Taguchi OA design can be used to correctly predict the size of microparticles fabricated by the single emulsion process and can therefore, ultimately, save time and costs during the manufacturing process of drug delivery formulations by minimising experimental runs.en
dc.format.extent22
dc.format.extent2916600
dc.language.isoeng
dc.relation.ispartofPLoS ONE
dc.subjectControlled release
dc.subjectTissue engineering
dc.subjectscaffold
dc.subjectregenerative medicine
dc.subjectin silico
dc.subjectDrug delivery
dc.subjectAgricultural and Biological Sciences(all)
dc.subjectBiochemistry, Genetics and Molecular Biology(all)
dc.titleOptimising poly(lactic-co-glycolic acid) microparticle fabrication using a Taguchi orthogonal array design-of-experiment approachen
dc.contributor.institutionSchool of Life and Medical Sciences
dc.contributor.institutionDepartment of Clinical and Pharmaceutical Sciences
dc.contributor.institutionCentre for Research into Topical Drug Delivery and Toxicology
dc.contributor.institutionPsychopharmacology, Drug Misuse and Novel Psychoactive Substances Unit
dc.contributor.institutionCentre for Research in Mechanisms of Disease and Drug Discovery
dc.contributor.institutionNatural Product Chemistry and Drug Design
dc.contributor.institutionDepartment of Clinical, Pharmaceutical and Biological Science
dc.contributor.institutionCentre for Health Services and Clinical Research
dc.contributor.institutionAirway Group
dc.contributor.institutionPharmaceutics
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85072663067&partnerID=8YFLogxK
rioxxterms.versionofrecord10.1371/journal.pone.0222858
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record