University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        The Importance of Self-excitation in Spiking Neural Networks Evolved to Recognize Temporal Patterns

        View/Open
        accepted_version_The_Importance_of_Self_excitation_in_Spiking_Neural_Networks_Evolved_to_Recognize_Temporal_Patterns.pdf (PDF, 3Mb)
        Author
        Yaqoob, Muhammad
        Steuber, Volker
        Wróbel, Borys
        Attention
        2299/21805
        Abstract
        Biological and artificial spiking neural networks process information by changing their states in response to the temporal patterns of input and of the activity of the network itself. Here we analyse very small networks, evolved to recognize three signals in a specific pattern (ABC) in a continuous temporal stream of signals (..CABCACB..). This task can be accomplished by networks with just four neurons (three interneurons and one output). We show that evolving the networks in the presence of noise and variation of the intervals of silence between signals biases the solutions towards networks that can maintain their states (a form of memory), while the majority of networks evolved without variable intervals between signals cannot do so. We demonstrate that in most networks, the evolutionary process leads to the presence of superfluous connections that can be pruned without affecting the ability of the networks to perform the task and, if the unpruned network can maintain memory, so does the pruned network. We then analyse how these small networks can perform their tasks, using a paradigm of finite state transducers. This analysis shows that self-excitatory loops (autapses) in these networks are crucial for both the recognition of the pattern and for memory maintenance.
        Publication date
        2019-09-09
        Published in
        Artificial Neural Networks and Machine Learning – ICANN 2019
        Published version
        https://doi.org/10.1007/978-3-030-30487-4_59
        Other links
        http://hdl.handle.net/2299/21805
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan