University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Investigation of guided wave properties of anisotropic composite laminates using a semi-analytical finite element method

        Author
        Duan, Wenbo
        Gan, Tat Hean
        Attention
        2299/21834
        Abstract
        Composite materials have been widely used in various applications, and guided waves are often used as a non-destructive testing tool to inspect defects or damage in composite laminates which are assemblies of multiple composite layers. These can have anisotropic material properties and arbitrary fibre orientation such that the guided wave properties of Lamb and shear-horizontal modes are direction-dependent. The group velocity of each wave mode is therefore to be considered with a component parallel to the wave propagation direction and a component perpendicular to the wave propagation direction. In this article, a semi-analytical finite element method is developed to model composite laminates with arbitrary fibre orientation and anisotropic material properties in each layer. Galerkin's principle is used to derive the weak forms of the governing equations, and an energy velocity formulation is used to calculate the parallel and perpendicular energy velocities. The finite element solutions are compared with available analytical and numerical solutions in the literature for forward waves, and excellent agreement is demonstrated. On this basis, the guided wave properties of backward waves have also been investigated. It is well understood that in an isotropic plate, the energy velocity of a backward wave is directed opposite to the phase velocity. However, in a composite laminate, the energy velocity of a backward wave is normally not exactly opposed to (180° out of phase with) the phase velocity but exhibits a skew angle. The angular dependences of wave properties of the forward and backward waves are investigated in this article.
        Publication date
        2019-09-15
        Published in
        Composites Part B: Engineering
        Published version
        https://doi.org/10.1016/j.compositesb.2019.106898
        Other links
        http://hdl.handle.net/2299/21834
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan