University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        A 100-kiloparsec wind feeding the circumgalactic medium of a massive compact galaxy

        View/Open
        Final Accepted Version (PDF, 2Mb)
        Author
        Rupke, David S.~N.
        Coil, Alison
        Geach, James E.
        Tremonti, Christy
        Diamond-Stanic, Aleksandar M.
        George, Erin R.
        Hickox, Ryan C.
        Kepley, Amanda A.
        Leung, Gene
        Moustakas, John
        Rudnick, Gregory
        Sell, Paul H.
        Attention
        2299/21911
        Abstract
        Ninety per cent of baryons are located outside galaxies, either in the circumgalactic or intergalactic medium1,2. Theory points to galactic winds as the primary source of the enriched and massive circumgalactic medium3,4,5,6. Winds from compact starbursts have been observed to flow to distances somewhat greater than ten kiloparsecs7,8,9,10, but the circumgalactic medium typically extends beyond a hundred kiloparsecs3,4. Here we report optical integral field observations of the massive but compact galaxy SDSS J211824.06+001729.4. The oxygen [O ii] lines at wavelengths of 3726 and 3729 angstroms reveal an ionized outflow spanning 80 by 100 square kiloparsecs, depositing metal-enriched gas at 10,000 kelvin through an hourglass-shaped nebula that resembles an evacuated and limb-brightened bipolar bubble. We also observe neutral gas phases at temperatures of less than 10,000 kelvin reaching distances of 20 kiloparsecs and velocities of around 1,500 kilometres per second. This multi-phase outflow is probably driven by bursts of star formation, consistent with theory11,12.
        Publication date
        2019-10-31
        Published in
        Nature
        Published version
        https://doi.org/10.1038/s41586-019-1686-1
        License
        Other
        Other links
        http://hdl.handle.net/2299/21911
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan