University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Imaging of X-Ray-Excited Emissions from Quantum Dots and Biological Tissue in Whole Mouse

        View/Open
        s41598_019_55769_5.pdf (PDF, 2Mb)
        s41598_019_55769_5_supplementaryData.zip (Unknown, 10Mb)
        readme.txt (Text file, 2Kb)
        Author
        Ryan, Sean G.
        Butler, Matthew N.
        Adeyemi, Segun
        Kalber, Tammy
        Patrick, Peter Stephen
        Thin, May Zaw
        Harrison, Ian F.
        Stuckey, Daniel J.
        Pule, Martin
        Lythgoe, Mark
        Attention
        2299/22010
        Abstract
        Optical imaging in clinical and preclinical settings can provide a wealth of biological information, particularly when coupled with targetted nanoparticles, but optical scattering and absorption limit the depth and resolution in both animal and human subjects. Two new hybrid approaches are presented, using the penetrating power of X-rays to increase the depth of optical imaging. Foremost, we demonstrate the excitation by X-rays of quantum-dots (QD) emitting in the near-infrared (NIR), using a clinical X-ray system to map the distribution of QDs at depth in whole mouse. We elicit a clear, spatially-resolved NIR signal from deep organs (brain, liver and kidney) with short (1 second) exposures and tolerable radiation doses that will permit future in vivo applications. Furthermore, X-ray-excited endogenous emission is also detected from whole mouse. The use of keV X-rays to excite emission from QDs and tissue represent novel biomedical imaging technologies, and exploit emerging QDs as optical probes for spatial-temporal molecular imaging at greater depth than previously possible.
        Publication date
        2019-12-16
        Published in
        Scientific Reports
        Published version
        https://doi.org/10.1038/s41598-019-55769-5
        Other links
        http://hdl.handle.net/2299/22010
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan