Show simple item record

dc.contributor.authorVasiliadou, Rafaela
dc.contributor.authorDimov, Nikolay
dc.contributor.authorSzita, Nicolas
dc.contributor.authorJordan, Sean F.
dc.contributor.authorLane, Nick
dc.date.accessioned2019-12-19T01:07:05Z
dc.date.available2019-12-19T01:07:05Z
dc.date.issued2019-10-18
dc.identifier.citationVasiliadou , R , Dimov , N , Szita , N , Jordan , S F & Lane , N 2019 , ' Possible mechanisms of CO2 reduction by H2 via prebiotic vectorial electrochemistry ' , Interface Focus , vol. 9 , no. 6 , pp. 1-11 . https://doi.org/10.1098/rsfs.2019.0073
dc.identifier.issn2042-8901
dc.identifier.otherPURE: 17332968
dc.identifier.otherPURE UUID: 3c3cb5ff-b23c-4bf5-a4e1-ad915b5686f3
dc.identifier.otherORCID: /0000-0002-2873-1505/work/66369098
dc.identifier.otherScopus: 85074580375
dc.identifier.otherPubMed: 31641439
dc.identifier.urihttp://hdl.handle.net/2299/22019
dc.description© 2019 The Authors.Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
dc.description.abstractMethanogens are putatively ancestral autotrophs that reduce CO 2 with H 2 to form biomass using a membrane-bound, proton-motive Fe(Ni)S protein called the energy-converting hydrogenase (Ech). At the origin of life, geologically sustained H+ gradients across inorganic barriers containing Fe(Ni)S minerals could theoretically have driven CO 2 reduction by H 2 through vectorial chemistry in a similar way to Ech. pH modulation of the redox potentials of H 2, CO 2 and Fe(Ni)S minerals could in principle enable an otherwise endergonic reaction. Here, we analysewhether vectorial electrochemistry can facilitate the reduction of CO 2 by H 2 under alkaline hydrothermal conditions using a microfluidic reactor. We present pilot data showing that steep pH gradients of approximately 5 pH units can be sustained over greater than 5 h across Fe(Ni)S barriers, with H+-flux across the barrier about two million-fold faster than OH-flux. This high flux produces a calculated 3-pH unit-gradient (equating to 180 mV) across single approximately 25-nm Fe(Ni)S nanocrystals, which is close to that required to reduce CO 2. However, the poor solubility of H2 at atmospheric pressure limits CO 2 reduction by H 2, explaining why organic synthesis has so far proved elusive in our reactor. Higher H 2 concentration will be needed in future to facilitate CO 2 reduction through prebiotic vectorial electrochemistry.en
dc.format.extent11
dc.language.isoeng
dc.relation.ispartofInterface Focus
dc.subjectCO2 reduction, origin of life, Energy-converting hydrogenase, alkaline hydrothermal vents, microfluidic reactor
dc.subjectCO reduction
dc.subjectAlkaline hydrothermal vents
dc.subjectMicrofluidic reactor
dc.subjectVectorial chemistry
dc.subjectOrigin of life
dc.subjectEnergy-converting hydrogenase
dc.subjectBioengineering
dc.subjectBiophysics
dc.subjectBiochemistry
dc.subjectBiotechnology
dc.subjectBiomedical Engineering
dc.subjectBiomaterials
dc.titlePossible mechanisms of CO2 reduction by H2 via prebiotic vectorial electrochemistryen
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85074580375&partnerID=8YFLogxK
rioxxterms.versionVoR
rioxxterms.versionofrecordhttps://doi.org/10.1098/rsfs.2019.0073
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record