University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Computational exploration of molecular receptive fields in the olfactory bulb reveals a glomerulus-centric chemical map

        Author
        Soelter, Jan
        Schumacher, Jan
        Spors, Hartwig
        Schmuker, Michael
        Attention
        2299/22064
        Abstract
        Progress in olfaction is currently hampered by incomplete knowledge about chemical receptive ranges of primary receptors. Moreover, the chemical logic underlying the arrangement of computational units in the olfactory bulb has still not been resolved. We undertook a large-scale approach at characterising molecular receptive ranges (MRRs) of glomeruli innervated by the MOR18-2 olfactory receptor in the dorsal olfactory bulb (dOB). Guided by an iterative approach that combined biological screening and machine learning, we selected 214 odorants to characterise the response of MOR18-2 and its neighbouring glomeruli. We discovered several previously unknown odorants activating MOR18-2 glomeruli, and we obtained detailed MRRs of MOR18-2 glomeruli and their neighbours. Physico-chemical MRR descriptions revealed that the spatial layout of glomeruli follows a chemical logic. Our results confirm earlier findings that demonstrate a chemical map underlying glomerular arrangement in the dOB. Moreover, our novel methodology that combines machine learning and physiological measuremens lights the way towards future high-throughput studies to deorphan and characterise structure-activity relationships in olfaction.
        Publication date
        2020-01-09
        Published in
        Scientific Reports
        Published version
        https://doi.org/10.1038/s41598-019-56863-4
        Other links
        http://hdl.handle.net/2299/22064
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan