Show simple item record

dc.contributor.authorGerrard, Allan
dc.contributor.authorRegelskis, Vidas
dc.date.accessioned2020-01-21T02:07:01Z
dc.date.available2020-01-21T02:07:01Z
dc.date.issued2020-03-01
dc.identifier.citationGerrard , A & Regelskis , V 2020 , ' Nested algebraic Bethe ansatz for orthogonal and symplectic open spin chains ' , Nuclear Physics B , vol. 952 , 114909 , pp. 1-67 . https://doi.org/10.1016/j.nuclphysb.2019.114909
dc.identifier.issn0550-3213
dc.identifier.otherPURE: 17545456
dc.identifier.otherPURE UUID: 514796dd-5c1b-4a50-a14b-ed500fd20bc4
dc.identifier.otherArXiv: http://arxiv.org/abs/1909.12123v1
dc.identifier.otherScopus: 85077915940
dc.identifier.otherORCID: /0000-0002-0092-6917/work/69424448
dc.identifier.urihttp://hdl.handle.net/2299/22086
dc.description© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC-By license (https://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
dc.description.abstractWe present a nested algebraic Bethe ansatz for one-dimensional so 2n- and sp 2n-symmetric open spin chains with diagonal boundary conditions. The monodromy matrix of these spin chains satisfies the defining relations on the extended twisted Yangians X ρ(so 2n,so 2n ρ) tw and X ρ(sp 2n,sp 2n ρ) tw, respectively. We use a generalisation of the De Vega and Karowski approach allowing us to relate the spectral problem of so 2n- or sp 2n-symmetric open spin chain to that of gl n-symmetric open spin chain studied by Belliard and Ragoucy. We explicitly derive the structure of Bethe vectors, their eigenvalues and the nested Bethe equations. We also provide a proof of Belliard and Ragoucy's trace formula for Bethe vectors of gl n-symmetric open spin chains.en
dc.format.extent67
dc.language.isoeng
dc.relation.ispartofNuclear Physics B
dc.subjectmath-ph
dc.subjecthep-th
dc.subjectmath.MP
dc.subjectnlin.SI
dc.subject82B23, 17B37
dc.subjectNuclear and High Energy Physics
dc.titleNested algebraic Bethe ansatz for orthogonal and symplectic open spin chainsen
dc.contributor.institutionMathematics Research Group
dc.contributor.institutionSchool of Physics, Astronomy and Mathematics
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85077915940&partnerID=8YFLogxK
rioxxterms.versionVoR
rioxxterms.versionofrecordhttps://doi.org/10.1016/j.nuclphysb.2019.114909
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record