University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Cyclic performance evaluation of a polyethylenimine/silica adsorbent with steam regeneration using simulated NGCC flue gas and actual flue gas of a gas-fired boiler in a bubbling fluidized bed reactor

        View/Open
        1_s2_0_S1750583618306789_main.pdf (PDF, 3Mb)
        Author
        Zhang, Wenbin
        Chenggong, Sun
        Snape, Colin E.
        Sun, Xuezhong
        Liu, Hao
        Attention
        2299/22164
        Abstract
        To accelerate the deployment of Carbon Capture and Storage (CCS) based on the solid amine adsorbents towards a practical scale application relevant to Natural Gas Combined Cycle (NGCC) power plants, this study has evaluated the cyclic performance of a polyethylenimine/silica adsorbent of kg scale in a laboratory scale bubbling fluidized bed reactor. A high volumetric concentration 80−90 vol% of steam mixed with N 2 and CO 2 has been used as the stripping gas during a typical temperature swing adsorption (TSA) cycle. Both the simulated NGCC flue gas and the actual flue gas from a domestic gas boiler have been used as the feed gas of the CO 2 capture tests with the solid adsorbent. Various characterization has been carried out to elucidate the possible reasons for the initial capacity decline under the steam regeneration conditions. The effect of presence of CO 2 in the stripping gas has also been studied by comparing the working capacities using different regeneration strategies. It has been demonstrated that the breakthrough and equilibrium CO 2 adsorption capacities can be stabilized at approximately 5.9 wt% and 8.6 wt%, respectively, using steam regeneration for both the simulated and actual natural gas boiler flue gases. However, using a concentration of 15 vol% CO 2 in the stripping gas has resulted in a significantly low working capacity at a level of 1.5 wt%, most likely due to the incomplete CO 2 desorption and degradation in a CO 2 containing environment.
        Publication date
        2020-02-04
        Published in
        International Journal of Greenhouse Gas Control
        Published version
        https://doi.org/10.1016/j.ijggc.2020.102975
        Other links
        http://hdl.handle.net/2299/22164
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan