Show simple item record

dc.contributor.authorKhodadadi, Amin
dc.contributor.authorLiaghat, Gholamhossein
dc.contributor.authorShahgholian-Ghahfarokhi, Davoud
dc.contributor.authorChizari, Mahmoud
dc.contributor.authorWang, Bin
dc.date.accessioned2020-02-18T11:22:00Z
dc.date.available2020-02-18T11:22:00Z
dc.date.issued2020-04
dc.identifier.citationKhodadadi , A , Liaghat , G , Shahgholian-Ghahfarokhi , D , Chizari , M & Wang , B 2020 , ' Numerical and experimental investigation of impact on bilayer aluminumrubber composite plate ' , Thin-Walled Structures , vol. 149 , 106673 . https://doi.org/10.1016/j.tws.2020.106673
dc.identifier.issn0263-8231
dc.identifier.otherORCID: /0000-0003-0555-1242/work/69424474
dc.identifier.urihttp://hdl.handle.net/2299/22286
dc.description© 2020. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.description.abstractThis paper aims to investigate the performance of an aluminum–rubber composite plate under impact loading. The impact resistance of the plate has been evaluated using both experimental and numerical methods. The experimental tests were carried out using gas gun at velocities of 75, 101, 144 and 168 m/s. The energy absorption of composite plates has been closely examined for all samples. The effect of rubber layer positioning either on front face or on back face of the aluminum plate was also evaluated. It was found that the composite plate with rubber on front face provides higher performance to absorb the energy. In parallel to the experiment, a finite element model was created using the finite element software LS-DYNA to simulate the response of the aluminum–rubber composite plate under a high energy rate loading condition. The data obtained from finite element modeling shown a close agreement with the experimental results in terms of failure mechanism and energy absorption. In addition, a parametric study was carried out incorporating different impact velocities, rubber formulation, rubber layer thickness, interface bonding strength between rubber and aluminum layers and ballistic performance of aluminum-rubber sandwich panel. It was concluded that by increasing the rubber layer’s thickness the energy absorption of the composite plate will be increased, especially when rubber layer placed in front face of the aluminum plate. Although at high interface bonding of rubber and aluminum layer, the composite with rubber layer in front face has better performance, but low bonding of interface lead to higher energy absorption in back face configuration.en
dc.format.extent13
dc.format.extent5366734
dc.format.extent5366734
dc.language.isoeng
dc.relation.ispartofThin-Walled Structures
dc.subjectImpact loading
dc.subjectNumerical simulation
dc.subjectLS-DYNA
dc.subjectEnergy absorption
dc.subjectBilayer aluminumrubber composite
dc.subjectCivil and Structural Engineering
dc.subjectBuilding and Construction
dc.subjectMechanical Engineering
dc.titleNumerical and experimental investigation of impact on bilayer aluminumrubber composite plateen
dc.contributor.institutionCentre for Engineering Research
dc.contributor.institutionEnergy and Sustainable Design Research Group
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Engineering and Technology
dc.description.statusPeer reviewed
dc.date.embargoedUntil2021-02-15
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85079329806&partnerID=8YFLogxK
rioxxterms.versionofrecord10.1016/j.tws.2020.106673
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record