Show simple item record

dc.contributor.authorPsarrou, Maria
dc.date.accessioned2020-04-15T09:34:30Z
dc.date.available2020-04-15T09:34:30Z
dc.date.issued2018-10-23
dc.identifier.urihttp://hdl.handle.net/2299/22579
dc.description.abstractThe function of the nervous system is shaped by the refined integration of synaptic inputs taking place at the single neuron level. Gain modulation is a computational principle that is widely used across the brain, in which the response of a neuronal unit to a set of inputs is affected in a multiplicative fashion by a second set of inputs, but without any effect on its selectivity. The arithmetic operations performed by pyramidal cells in cortical brain areas have been well characterised, along with the underlying mechanisms at the level of networks and cells, for instance background synaptic noise and dendritic saturation. However, in spite of the vast amount of research on the cerebellum and its function, little is known about neuronal computations carried out by its cellular components. A particular area of interest are the cerebellar nuclei, the main output gate of the cerebellum to the brain stem and cortical areas. The aim of this thesis is to contribute to an understanding of the arithmetic operations performed by neurons in the cerebellar nuclei. Focus is placed on two putative determinants, the location of the synaptic input and the presence of channel noise. To analyse the effect of channel noise, the known voltage-gated ion channels of a cerebellar nucleus neuron model are translated to stochastic Markov formalisms and their electrophysiologial behaviour is compared to their deterministic Hodgkin-Huxley counterparts. The findings demonstrate that in most cases, the behaviour of stochastic channels matches the reference deterministic models, with the notable exception of voltage-gated channels with fast kinetics. Two potential explanations are suggested for this discrepancy. Firstly, channels with fast kinetics are strongly affected by the artefactual loss of gating events in the simulation that is caused by the use of a finite-length time step. While this effect can be mitigated, in part, by using very small time steps, the second source of simulation artefacts is the rectification of the distribution of open channels, when channel kinetics characteristics allow the generation of a window current, with an temporal-averaged equilibrium close to zero. Further, stochastic gating is implemented in a realistic cerebellar nucleus neuronal model. The resulting stochastic model exhibits probabilistic spiking and a similar output rate as the corresponding deterministic cerebellar nucleus neuronal model. However, the outcomes of this thesis indicate the computational properties of the cerebellar nucleus neuronal model are independent of the presence of ion channel noise. The main result of this thesis is that the synaptic input location determines the single neuron computational properties, both in the cerebellar nucleus and layer Vb pyramidal neuronal models. The extent of multiplication increases systematically with the distance from the soma, for the cerebellar nucleus, but not for the layer Vb pyramidal neuron, where it is smaller than it would be expected for the distance from the soma. For both neurons, the underlying mechanism is related to the combined effect of nonlinearities introduced by dendritic saturation and the synaptic input noise. However, while excitatory inputs in the perisomatic areas in the cerebellar nucleus undergo additive operations and the distal areas multiplicative, in the layer Vb pyramidal neuron the integration of the excitatory driving input is always multiplicative. In addition, the change in gain is sensitive to the synchronicity of the excitatory synaptic input in the layer Vb pyramidal neuron, but not in the cerebellar nucleus neuron. These observations indicate that the same gain control mechanism might be utilized in distinct ways, in different computational contexts and across different areas, based on the neuronal type and its function.en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectgain modulationen_US
dc.subjectdendritic computationsen_US
dc.subjection channel noiseen_US
dc.subjectstochastic gatingen_US
dc.subjectcerebellar nucleus neuronen_US
dc.subjectpyramidal neuronen_US
dc.subjectcerebellumen_US
dc.subjectneuronal arithmeticen_US
dc.subjectsingle neuron modelingen_US
dc.subjectcomputational neuroscienceen_US
dc.titleComputational Properties of Cerebellar Nucleus Neurons: Effects of Stochastic Ion Channel Gating and Input Locationen_US
dc.typeinfo:eu-repo/semantics/doctoralThesisen_US
dc.identifier.doidoi:10.18745/th.22579*
dc.identifier.doi10.18745/th.22579
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhDen_US
dcterms.dateAccepted2018-10-23
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US
rioxxterms.versionNAen_US
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/en_US
rioxxterms.licenseref.startdate2020-04-15
herts.preservation.rarelyaccessedtrue
rioxxterms.funder.projectba3b3abd-b137-4d1d-949a-23012ce7d7b9en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess