University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Evaluation of Features in Detection of Dislike Responses to Audio–Visual Stimuli from EEG Signals

        View/Open
        Final Published version (PDF, 2Mb)
        Author
        Feradov, Firgan
        Mporas, Iosif
        Ganchev, Todor
        Attention
        2299/22621
        Abstract
        There is a strong correlation between the like/dislike responses to audio–visual stimuli and the emotional arousal and valence reactions of a person. In the present work, our attention is focused on the automated detection of dislike responses based on EEG activity when music videos are used as audio–visual stimuli. Specifically, we investigate the discriminative capacity of the Logarithmic Energy (LogE), Linear Frequency Cepstral Coefficients (LFCC), Power Spectral Density (PSD) and Discrete Wavelet Transform (DWT)-based EEG features, computed with and without segmentation of the EEG signal, on the dislike detection task. We carried out a comparative evaluation with eighteen modifications of the above-mentioned EEG features that cover different frequency bands and use different energy decomposition methods and spectral resolutions. For that purpose, we made use of Naïve Bayes classifier (NB), Classification and regression trees (CART), k-Nearest Neighbors (kNN) classifier, and support vector machines (SVM) classifier with a radial basis function (RBF) kernel trained with the Sequential Minimal Optimization (SMO) method. The experimental evaluation was performed on the well-known and widely used DEAP dataset. A classification accuracy of up to 98.6% was observed for the best performing combination of pre-processing, EEG features and classifier. These results support that the automated detection of like/dislike reactions based on EEG activity is feasible in a personalized setup. This opens opportunities for the incorporation of such functionality in entertainment, healthcare and security applications.
        Publication date
        2020-04-20
        Published in
        Computers
        Published version
        https://doi.org/10.3390/computers9020033
        License
        http://creativecommons.org/licenses/by/4.0/
        Other links
        http://hdl.handle.net/2299/22621
        Relations
        School of Physics, Engineering & Computer Science
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan