Show simple item record

dc.contributor.authorNishimura, N.
dc.contributor.authorRauscher, T.
dc.contributor.authorHirschi, R.
dc.contributor.authorCescutti, G.
dc.contributor.authorMurphy, A. St J.
dc.contributor.authorFröhlich, C.
dc.date.accessioned2020-05-02T00:09:16Z
dc.date.available2020-05-02T00:09:16Z
dc.date.issued2019-10
dc.identifier.citationNishimura , N , Rauscher , T , Hirschi , R , Cescutti , G , Murphy , A S J & Fröhlich , C 2019 , ' Uncertainties in νp-process nucleosynthesis from Monte Carlo variation of reaction rates ' , Monthly Notices of the Royal Astronomical Society , vol. 489 , no. 1 , pp. 1379-1396 . https://doi.org/10.1093/mnras/stz2104
dc.identifier.issn0035-8711
dc.identifier.urihttp://hdl.handle.net/2299/22644
dc.descriptionThis article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2019 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
dc.description.abstractIt has been suggested that a νp-process can occur when hot, dense, and proton-rich matter is expanding within a strong flux of antineutrinos. In such an environment, proton-rich nuclides can be produced in sequences of proton captures and (n, p) reactions, where the free neutrons are created in situ by νe + p → n + e+ reactions. The detailed hydrodynamic evolution determines where the nucleosynthesis path turns off from N = Z line and how far up the nuclear chart it runs. In this work, the uncertainties on the final isotopic abundances stemming from uncertainties in the nuclear reaction rates were investigated in a large-scale Monte Carlo approach, simultaneously varying more than 10 000 reactions. A large range of model conditions was investigated because a definitive astrophysical site for the νp-process has not yet been identified. The present parameter study provides, for each model, identification of the key nuclear reactions dominating the uncertainty for a given nuclide abundance. As all rates appearing in the νp-process involve unstable nuclei, and thus only theoretical rates are available, the final abundance uncertainties are larger than those for nucleosynthesis processes closer to stability. Nevertheless, most uncertainties remain below a factor of 3 in trajectories with robust nucleosynthesis. More extreme conditions allow production of heavier nuclides but show larger uncertainties because of the accumulation of the uncertainties in many rates and because the termination of nucleosynthesis is not at equilibrium conditions. It is also found that the solar ratio of the abundances of 92Mo and 94Mo could be reproduced within uncertainties.en
dc.format.extent18
dc.format.extent2236437
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society
dc.subjectAbundances
dc.subjectNeutrino
dc.subjectNuclear reactions
dc.subjectNucleosynthesis
dc.subjectStars: abundances
dc.subjectStars: neutron
dc.subjectSupernovae: general
dc.subjectAstronomy and Astrophysics
dc.subjectSpace and Planetary Science
dc.titleUncertainties in νp-process nucleosynthesis from Monte Carlo variation of reaction ratesen
dc.contributor.institutionCentre for Astrophysics Research
dc.contributor.institutionSchool of Physics, Astronomy and Mathematics
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85083251908&partnerID=8YFLogxK
dc.identifier.urlhttps://arxiv.org/abs/1907.13129
rioxxterms.versionofrecord10.1093/mnras/stz2104
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record