Show simple item record

dc.contributor.authorBartholomew-Biggs, M.
dc.contributor.authorChristianson, B.
dc.contributor.authorZuo, M.
dc.date.accessioned2008-07-28T12:56:37Z
dc.date.available2008-07-28T12:56:37Z
dc.date.issued2006
dc.identifier.citationBartholomew-Biggs , M , Christianson , B & Zuo , M 2006 , ' Optimizing Preventive Maintenance Models ' , Computational Optimization and Applications , vol. 35 , no. 2 , pp. 261-279 . https://doi.org/10.1007/s10589-006-6449-x
dc.identifier.issn0926-6003
dc.identifier.otherPURE: 86933
dc.identifier.otherPURE UUID: aa4c8afa-62e2-4bf6-b198-88c68d951484
dc.identifier.otherdspace: 2299/2266
dc.identifier.otherScopus: 33749641002
dc.identifier.urihttp://hdl.handle.net/2299/2266
dc.description' The original publication is available at www.springerlink.com ' Copyright Springer
dc.description.abstractWe deal with the problem of scheduling preventive maintenance (PM) for a system so that, over its operating life, we minimize a performance function which reflects repair and replacement costs as well as the costs of the PM itself. It is assumed that a hazard rate model is known which predicts the frequency of system failure as a function of age. It is also assumed that each PM produces a step reduction in the effective age of the system. We consider some variations and extensions of a PMscheduling approach proposed by Lin et al [6]. In particular we consider numerical algorithms which may be more appropriate for hazard rate models which are less simple than those used in [6] and we introduce some constraints into the problem in order to avoid the possibility of spurious solutions. We also discuss the use of automatic differentiation (AD) as a convenient tool for computing the gradients and Hessians that are needed by numerical optimization methods. The main contribution of the paper is a new problem formulation which allows the optimal number of occurrences of PM to be determined along with their optimal timings. This formulation involves the global minimization of a non-smooth performance function. In our numerical tests this is done via the algorithm DIRECT proposed by Jones et al [19]. We show results for a number of examples, involving different hazard rate models, to give an indication of how PM schedules can vary in response to changes in relative costs of maintenance, repair and replacement.en
dc.language.isoeng
dc.relation.ispartofComputational Optimization and Applications
dc.rightsOpen
dc.titleOptimizing Preventive Maintenance Modelsen
dc.contributor.institutionSchool of Computer Science
dc.description.statusPeer reviewed
dc.relation.schoolSchool of Computer Science
dcterms.dateAccepted2006
rioxxterms.versionofrecordhttps://doi.org/10.1007/s10589-006-6449-x
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue
herts.rights.accesstypeOpen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record