Show simple item record

dc.contributor.authorGajjar, Parmesh
dc.contributor.authorBale, Hrishikesh
dc.contributor.authorBurnett, Timothy
dc.contributor.authorChen, Xizhong
dc.contributor.authorElliot, James A.
dc.contributor.authorGomez, Herminso Villarraga
dc.contributor.authorHammond, Robert B.
dc.contributor.authorNguyen, Hien
dc.contributor.authorRoberts, Kevin J.
dc.contributor.authorStyliari, Ioanna Danai
dc.contributor.authorTordoff, Benjamin
dc.contributor.authorWithers, Philip
dc.contributor.authorMurnane, Darragh
dc.date.accessioned2020-05-20T00:03:02Z
dc.date.available2020-05-20T00:03:02Z
dc.date.issued2020-04-26
dc.identifier.citationGajjar , P , Bale , H , Burnett , T , Chen , X , Elliot , J A , Gomez , H V , Hammond , R B , Nguyen , H , Roberts , K J , Styliari , I D , Tordoff , B , Withers , P & Murnane , D 2020 , Unlocking the Microstructure of Inhalation Blends using X-ray Microscopy . in Respiratory Drug Delivery 2020 . vol. 1 , Respiratory Drug Delivery, RDD , pp. 101-112 . < https://www.rddonline.com/rdd/article.php?ArticleID=2656 >
dc.identifier.otherBibtex: 66ab3220a52047cd8dae8fbcebf30591
dc.identifier.otherORCID: /0000-0002-7476-2994/work/74458452
dc.identifier.urihttp://hdl.handle.net/2299/22724
dc.description© Respiratory Drug Delivery 2020. Reproduced with permission from Respiratory Drug Delivery 2020, Virginia Commonwealth University and RDD Online.
dc.description.abstractMicrostructural equivalence (Q3) for dry powder inhalers (DPIs) is complex because it involves both pre- and post-aerosolization powders and can be influenced by the DPI device and the patient’s aerosolization efficiency. In this paper, we show how advanced 3D X-ray microscopy (XRM, also known as X-ray computed tomography) techniques can provide unique microstructural insights into pre-aerosolized inhalation powders. Nano-scale XRM is used to detect differences within individual lactose particles and agglomerates, including voids and intra-agglomerate size distributions. Micro-scale XRM is used to visualize and quantify lactose fines (<12 mm) within a powder bed. XRM is also used to discriminate between excipient and terbutaline sulphate particles in an inhalation blend. These advanced XRM techniques could provide valuable microstructural information to help address Q3 equivalence during bioequivalence determination in inhalation drug products.en
dc.format.extent12
dc.format.extent2727683
dc.language.isoeng
dc.publisherRespiratory Drug Delivery, RDD
dc.relation.ispartofRespiratory Drug Delivery 2020
dc.titleUnlocking the Microstructure of Inhalation Blends using X-ray Microscopyen
dc.contributor.institutionDepartment of Clinical and Pharmaceutical Sciences
dc.contributor.institutionSchool of Life and Medical Sciences
dc.contributor.institutionCentre for Research into Topical Drug Delivery and Toxicology
dc.contributor.institutionPharmaceutics
dc.contributor.institutionAirway Group
dc.contributor.institutionPharmaceutical Analysis and Product Characterisation
dc.contributor.institutionDepartment of Clinical, Pharmaceutical and Biological Science
dc.identifier.urlhttps://www.rddonline.com/rdd/article.php?ArticleID=2656
rioxxterms.typeOther
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record