University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Estimation of the Microbiological Quality of Meat using Rapid and Non-Invasive Spectroscopic Sensors

        View/Open
        09110566.pdf (PDF, 1Mb)
        Author
        Fengou, Lemonia Christina
        Mporas, Iosif
        Spyrelli, Evgenia
        Lianou, Alexandra
        Nychas, George-John
        Attention
        2299/22841
        Abstract
        Spectroscopic methods in tandem with machine learning methodologies have attracted considerable research interest for the estimation of food quality. The objective of this study was the evaluation of Fourier transform infrared (FTIR) spectroscopy and multispectral imaging (MSI) coupled with appropriate machine learning regression algorithms for assessing meat microbiological quality. For this purpose, minced pork patties were stored aerobically and under modified atmosphere packaging (MAP) conditions, at isothermal and dynamic temperature conditions. At regular time intervals during storage, samples were subjected to (i) microbiological analysis, (ii) FTIR measurements and (iii) MSI acquisition. The collected FTIR data were processed by feature extraction methods to reduce dimensionality, and subsequently Support Vector Machines (SVM) regression models were trained using spectral features (FTIR and MSI) to estimate microbiological quality of meat (microbial population). The regression models were evaluated with different experimental replicates using distinct meat batches. The performance of the models was evaluated in terms of correlation coefficient (r), root mean square error (RMSE), mean absolute error (MAE) and residual prediction deviation (RPD). The RMSE values for the microbial population estimation models using FTIR were 1.268 and 1.024 for aerobic and MAP storage, respectively. The performance in terms of RMSE for the MSI-based models was 1.144 for aerobic and 0.923 for MAP storage, while the combination of FTIR and MSI spectra resulted in models with RMSE equal to 1.146 for aerobic and 0.886 for MAP storage. The experimental results demonstrated the potential of estimating the microbiological quality of minced pork meat from spectroscopic data.
        Publication date
        2020-06-08
        Published in
        IEEE Access
        Published version
        https://doi.org/10.1109/ACCESS.2020.3000690
        Other links
        http://hdl.handle.net/2299/22841
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan