University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Radio constraints on dark matter annihilation in Canes Venatici I with LOFAR

        View/Open
        staa1657.pdf (PDF, 1Mb)
        Author
        Vollmann, Martin
        Heesen, Volker
        Shimwell, Timothy
        Hardcastle, Martin J.
        Brüggen, Marcus
        Sigl, Günter
        Röttgering, Huub
        Attention
        2299/22877
        Abstract
        Dwarf galaxies are dark matter-dominated and therefore promising targets for the search for weakly interacting massive particles (WIMPs), which are well-known candidates for dark matter. Annihilation of WIMPs produce ultra-relativistic cosmic-ray electrons and positrons that emit synchrotron radiation in the presence of magnetic fields. For typical magnetic field strengths (few $\mu $G) and $\mathcal O$(GeV-TeV) WIMP masses (and thus typical electron energies of the same order) this emission peaks at hundreds of MHz. Here, we use the non-detection of 150-MHz radio continuum emission from the dwarf spheroidal galaxy `Canes Venatici I' with the LOw-Frequency ARray (LOFAR) to derive constraints on the annihilation cross section of WIMPs into primary electron-positron and other fundamental particle-antiparticle pairs. In this first-of-its-kind LOFAR study, we obtain new constraints on annihilating WIMP dark matter (DM). Using conservative estimates for the magnetic field strengths and diffusion coefficients, we obtain limits that are comparable with those by the Fermi Large Area Telescope (Fermi-LAT) using gamma-ray observations. Assuming s-wave annihilation and WIMPs making up 100% of the DM density, our limits exclude several thermal WIMP realisations in the $[2,20]$-GeV mass range. A more ambitious multi-wavelength and multi-target LOFAR study could improve these limits by a few orders of magnitude.
        Publication date
        2020-06-13
        Published in
        Monthly Notices of the Royal Astronomical Society
        Published version
        https://doi.org/10.1093/mnras/staa1657
        Other links
        http://hdl.handle.net/2299/22877
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan