University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Regulating the pH of bicarbonate solutions without purging gases: Application to dissolution testing of enteric coated tablets, pellets and microparticles

        View/Open
        Author_accepted_Manuscript_Bicarbonate_buffer_IJP.pdf (PDF, 737Kb)
        Author
        Scott, Nathan
        Patel, Kavil
        Sithole, Tariro
        Xenofontos, Konstantina
        Mohylyuk, Valentyn
        Liu, Fang
        Attention
        2299/22938
        Abstract
        Dissolution media based on bicarbonate buffers closely mimic the environment of intestinal fluids and thus improve in vitro in vivo correlation compared to phosphate buffers. Purging gases into the medium is used as a method to stabilise bicarbonate buffers; however, this causes issues due to the disturbance of the hydrodynamics in the dissolution vessel. The aim of this study was to develop a novel system to regulate and stabilise the pH of bicarbonate buffers without purging gases for the application of dissolution testing of enteric coated products. A novel enclosure system was applied to the USP II dissolution vessel to supply N2 and CO2 gases above the dissolution medium without purging into the solution. Drug release from enteric coated predinisolone microparticles (216.9 µm), pellets (1.25 mm) and commercially available tablets was determined in 0.1 M HCl and subsequently in pH 6.8 phosphate buffer or pH 6.2–6.8 bicarbonate buffers generated by titration of the acidic medium in situ using USP II apparatus. Supplying N2 at 3–4 bar and CO2 at 0.1 bar were able to increase the pH of the bicarbonate buffer from pH 6.2 to 6.8 within 45 min and subsequently stabilise the medium pH at 6.8 ± 0.05 pH units. Enteric coated microparticles showed much faster drug release in the physiological bicarbonate buffers than tablets and pellets. The novel bicarbonate-based dissolution system moves forward the application of the physiological bicarbonate buffers for testing pharmaceutical products to meet compendial requirements.
        Publication date
        2020-07-30
        Published in
        International Journal of Pharmaceutics
        Published version
        https://doi.org/10.1016/j.ijpharm.2020.119562
        Other links
        http://hdl.handle.net/2299/22938
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan