University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        A General Traffic Flow Prediction Approach Based on Spatial-Temporal Graph Attention

        View/Open
        IEEE_Access_Final.pdf (PDF, 5Mb)
        Author
        Tang, Cong
        Sun, Jingru
        Sun, Yichuang
        Peng, Mu
        Gan, Nianfei
        Attention
        2299/23119
        Abstract
        Accurate and reliable traffic flow prediction is critical to the safe and stable deployment of intelligent transportation systems. However, it is very challenging due to the complex spatial and temporal dependence of traffic flows. Most existing works require the information of the traffic network structure and human intervention to model the spatial-temporal association of traffic data, resulting in low generality of the model and unsatisfactory prediction performance. In this paper, we propose a general spatial-temporal graph attention based dynamic graph convolutional network (GAGCN) model to predict traffic flow. GAGCN uses the graph attention networks to extract the spatial associations among nodes hidden in the traffic feature data automatically which can be dynamically adjusted over time. And then the graph convolution network is adjusted based on the spatial associations to extract the spatial features of the road network. Notably, the information of road network structure and human intervention are not required in GAGCN. The forecasting accuracy and the generality are evaluated with two real-world traffic datasets. Experimental results indicate that our GAGCN surpasses the state-of-the-art baselines on one of the two datasets.
        Publication date
        2020
        Published in
        IEEE Access
        Published version
        https://doi.org/10.1109/ACCESS.2020.3018452
        Other links
        http://hdl.handle.net/2299/23119
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan