Show simple item record

dc.contributor.authorHuang, Chenliang
dc.contributor.authorMukhin, Evgeny
dc.contributor.authorVicedo, Benoît
dc.contributor.authorYoung, Charles
dc.date.accessioned2020-09-12T00:04:56Z
dc.date.available2020-09-12T00:04:56Z
dc.date.issued2019-08-14
dc.identifier.citationHuang , C , Mukhin , E , Vicedo , B & Young , C 2019 , ' The solutions of $\mathfrak{gl}_{M|N}$ Bethe ansatz equation and rational pseudodifferential operators ' , Selecta Mathematica, New Series , vol. 25 , 52 . https://doi.org/10.1007/s00029-019-0498-3
dc.identifier.issn1022-1824
dc.identifier.otherPURE: 17049699
dc.identifier.otherPURE UUID: 5edbd160-03bc-4786-80dc-bcb726225b4f
dc.identifier.otherArXiv: http://arxiv.org/abs/1809.01279v1
dc.identifier.otherORCID: /0000-0002-7490-1122/work/80218629
dc.identifier.urihttp://hdl.handle.net/2299/23123
dc.description© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s00029-019-0498-3.
dc.description.abstractWe describe a reproduction procedure which, given a solution of the $\mathfrak{gl}_{M|N}$ Gaudin Bethe ansatz equation associated to a tensor product of polynomial modules, produces a family $P$ of other solutions called the population. To a population we associate a rational pseudodifferential operator $R$ and a superspace $W$ of rational functions. We show that if at least one module is typical then the population $P$ is canonically identified with the set of minimal factorizations of $R$ and with the space of full superflags in $W$. We conjecture that the singular eigenvectors (up to rescaling) of all $\mathfrak{gl}_{M|N}$ Gaudin Hamiltonians are in a bijective correspondence with certain superspaces of rational functions.en
dc.language.isoeng
dc.relation.ispartofSelecta Mathematica, New Series
dc.subjectmath.QA
dc.subjectmath-ph
dc.subjectmath.MP
dc.titleThe solutions of $\mathfrak{gl}_{M|N}$ Bethe ansatz equation and rational pseudodifferential operatorsen
dc.contributor.institutionMathematics Research Group
dc.contributor.institutionSchool of Physics, Astronomy and Mathematics
dc.description.statusPeer reviewed
dc.date.embargoedUntil2020-08-14
rioxxterms.versionAM
rioxxterms.versionofrecordhttps://doi.org/10.1007/s00029-019-0498-3
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record