University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Approximations to limit cycles for a nonlinear multi-degree-of-freedom system with a cubic nonlinearity through combining the harmonic balance method with perturbation techniques

        View/Open
        NLM_2020_62_Accepted_Version.pdf (PDF, 664Kb)
        Author
        Lewis, Andrew
        Attention
        2299/23124
        Abstract
        This paper presents an approach to obtaining higher order approximations to limit cycles of an autonomous multi-degree-of-freedom system with a single cubic nonlinearity based on a first approximation involving first and third harmonics obtained with the harmonic balance method. This first approximation, which is similar to one which has previously been reported in the literature, is an analytical solution, except that the frequency has to be obtained numerically from a polynomial equation of degree 16. An improved solution is then obtained in a perturbation procedure based on the refinement of the harmonic balance solution. The stability of the limit cycles obtained is then investigated using Floquet analysis. The capability of this approach to refine the results obtained by the harmonic balance first approximation is demonstrated, by direct comparison with time domain simulation and frequency components obtained using the Discrete Fourier Transform. The particular case considered was based on an aeroelastic analysis of an all-moving control surface with a nonlinearity in the torsional degree-of-freedom of the root support, and parameters corresponding to air speed, together with linear stiffness and viscous damping of the root support were varied. It is also shown, for the cases considered, how the method can reveal further bifurcational behaviour of the system beyond the initial Hopf bifurcations which first lead to the onset of limit cycle oscillations.
        Publication date
        2020-11
        Published in
        International Journal of Non-Linear Mechanics
        Published version
        https://doi.org/10.1016/j.ijnonlinmec.2020.103590
        Other links
        http://hdl.handle.net/2299/23124
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan