University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Damage Characterisation in Composite Laminates using Vibro-Acoustic Technique

        View/Open
        ICESF20_Damage_Characterisation_in_Composite_Laminate_using_Vibro_Acoustic_Technique_clean.pdf (PDF, 767Kb)
        Author
        Andersen , Kristian Gjerrestad
        Jombo, Gbanaibolou
        Ismail, Sikiru O.
        Chen, Yong Kang
        Dhakal, Hom Nath
        Zhang, Yu
        Attention
        2299/23128
        Abstract
        The need to characterise in-service damage in composite structures is increasingly becoming important as composites find higher utilisation in wind turbines, aerospace, automotive, marine, among others. This paper investigates the feasibility of simplifying the conventional acousto-ultrasonic technique setup for quick and economic one-sided in-service inspection of composite structures. Acousto-ultrasonic technique refers to the approach of using ultrasonic transducer for local excitation while sensing the material response with an acoustic emission sensor. However, this involves transducers with several auxiliaries. The approach proposed herewith, referred to as vibro-acoustic testing, involves a low level of vibration impact excitation and acoustic emission sensing for damage characterisation. To test the robustness of this approach, first, a quasi-static test was carried out to impute low-velocity impact damage on three groups of test samples with different ply stacking sequences. Next, the vibro-acoustic testing was performed on all test samples with the acoustic emission response for the samples acquired. Using the acoustic emission test sample response for all groups, the stress wave factor was determined using the peak voltage stress wave factor method. The stress wave factor results showed an inverse correlation between the level of impact damage and stress wave factor across all the test sample groups. This corresponds with what has been reported in literature for acousto-ultrasonic technique; thus demonstrating the robustness of the proposed vibro-acoustic set-up.
        Publication date
        2020-09-10
        Other links
        http://hdl.handle.net/2299/23128
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan