University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        LOFAR discovery of a radio halo in the high-redshift galaxy cluster PSZ2 G099.86+58.45

        View/Open
        Final Accepted Version (PDF, 1Mb)
        Author
        Cassano, R.
        Botteon, A.
        Gennaro, G. Di
        Brunetti, G.
        Sereno, M.
        Shimwell, T. W.
        Weeren, R. J. van
        Brüggen, M.
        Gastaldello, F.
        Izzo, L.
        Bîrzan, L.
        Bonafede, A.
        Cuciti, V.
        Gasperin, F. de
        Rötttgering, H. J. A.
        Hardcastle, M.
        Mechev, A. P.
        Tasse, C.
        Attention
        2299/23160
        Abstract
        In this Letter, we report the discovery of a radio halo in the high-redshift galaxy cluster PSZ2 G099.86+58.45 ($z=0.616$) with the LOw Frequency ARray (LOFAR) at 120-168 MHz. This is one of the most distant radio halos discovered so far. The diffuse emission extends over $\sim$ 1 Mpc and has a morphology similar to that of the X-ray emission as revealed by XMM-Newton data. The halo is very faint at higher frequencies and is barely detected by follow-up 1-2 GHz Karl G.~Jansky Very Large Array (JVLA) observations, which enable us to constrain the radio spectral index to be $\alpha\leq 1.5-1.6$, i.e.; with properties between canonical and ultra-steep spectrum radio halos. Radio halos are currently explained as synchrotron radiation from relativistic electrons that are re-accelerated in the intra-cluster medium (ICM) by turbulence driven by energetic mergers. We show that in such a framework radio halos are expected to be relatively common at $\sim150$ MHz ($\sim30-60\%$) in clusters with mass and redshift similar to PSZ2 G099.86+58.45; however, at least 2/3 of these radio halos should have steep spectrum and thus be very faint above $\sim 1$ GHz frequencies. Furthermore, since the luminosity of radio halos at high redshift depends strongly on the magnetic field strength in the hosting clusters, future LOFAR observations will also provide vital information on the origin and amplification of magnetic fields in galaxy clusters.
        Publication date
        2019-08-19
        Published in
        Astrophysical Journal Letters
        Published version
        https://doi.org/10.3847/2041-8213/ab32ed
        License
        Other
        Other links
        http://hdl.handle.net/2299/23160
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan