University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Constraining Nucleosynthesis in Two CEMP Progenitors Using Fluorine

        View/Open
        staa2610.pdf (PDF, 1Mb)
        Author
        Mura-Guzmán, A.
        Yong, D.
        Abate, C.
        Karakas, A.
        Kobayashi, C.
        Oh, H.
        Chun, S.
        Mace, G.
        .
        Attention
        2299/23169
        Abstract
        We present new fluorine abundance estimations in two carbon enhanced metal-poor (CEMP) stars, HE 1429-0551 and HE 1305+0007. HE 1429-0551 is also enriched in slow neutron-capture process (s-process) elements, a CEMP-s, and HE 1305+0007 is enhanced in both, slow and rapid neutron-capture process elements, a CEMP-s/r. The F abundances estimates are derived from the vibration-rotation transition of the HF molecule at 23358.6 A using high-resolution infrared spectra obtained with the Immersion Grating Infrared Spectrometer (IGRINS) at the 4m-class Lowell Discovery Telescope. Our results include a F abundance measurement in HE 1429-0551 of A(F) = +3.93 ([F/Fe] = +1.90) at [Fe/H] = -2.53, and a F upper limit in HE 1305+0007 of A(F) <+3.28 ([F/Fe] <+1.00) at [Fe/H] = -2.28. Our new derived F abundance in HE 1429-0551 makes this object the most metal-poor star where F has been detected. We carefully compare these results with literature values and state-of-the-art CEMP-s model predictions including detailed AGB nucleosynthesis and binary evolution. The modelled fluorine abundance for HE 1429-0551 is within reasonable agreement with our observed abundance, although is slightly higher than our observed value. For HE 1429-0551, our findings support the scenario via mass transfer by a primary companion during its thermally-pulsing phase. Our estimated upper limit in HE 1305+0007, along with data from the literature, shows large discrepancies compared with AGB models. The discrepancy is principally due to the simultaneous s- and r-process element enhancements which the model struggles to reproduce.
        Publication date
        2020-11-01
        Published in
        Monthly Notices of the Royal Astronomical Society
        Published version
        https://doi.org/10.1093/mnras/staa2610
        Other links
        http://hdl.handle.net/2299/23169
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan