Show simple item record

dc.contributor.authorOladapo, B. I.
dc.contributor.authorZahedi, S. A.
dc.contributor.authorIsmail, S. O.
dc.contributor.authorOmigbodun, F. T.
dc.contributor.authorOluwole, B.
dc.contributor.authorOlawumi, M. A.
dc.contributor.authorMuhammad, M. A.
dc.date.accessioned2020-10-21T23:13:24Z
dc.date.available2020-10-21T23:13:24Z
dc.date.issued2020-10-21
dc.identifier.citationOladapo , B I , Zahedi , S A , Ismail , S O , Omigbodun , F T , Oluwole , B , Olawumi , M A & Muhammad , M A 2020 , ' 3D printing of PEEK–cHAp scaffold for medical bone implant ' , Bio-Design and Manufacturing , vol. 2020 , s42242-020-00098-0 . https://doi.org/10.1007/s42242-020-00098-0
dc.identifier.issn2522-8552
dc.identifier.otherPURE: 22616014
dc.identifier.otherPURE UUID: 616910d8-ba94-4752-bf98-aa0618ca318e
dc.identifier.otherORCID: /0000-0003-1451-1736/work/82470033
dc.identifier.otherScopus: 85093102308
dc.identifier.urihttp://hdl.handle.net/2299/23301
dc.descriptionFunding Information: We appreciate the funding/financial support received from the Higher Education Innovation Fund (HEIF) of De Montfort University, Leicester, UK, under Research Project No. 0043.06. Publisher Copyright: © 2020, Zhejiang University Press.
dc.description.abstractThe major drawback associated with PEEK implants is their biologically inert surface, which caused unsatisfactory cellular response and poor adhesion between the implants and surrounding soft tissues against proper bone growth. In this study, polyetheretherketone (PEEK) was incorporated with calcium hydroxyapatite (cHAp) to fabricate a PEEK–cHAp biocomposite, using the fused deposition modeling (FDM) method and a surface treatment strategy to create microporous architectures onto the filaments of PEEK lattice scaffold. Also, nanostructure and morphological tests of the PEEK–cHAp biocomposite were modeled and analyzed on the FDM-printed PEEK–cHAp biocomposite sample to evaluate its mechanical and thermal strengths as well as in vitro cytotoxicity via a scanning electron microscope (SEM). A technique was used innovatively to create and investigate the porous nanostructure of the PEEK with controlled pore size and distribution to promote cell penetration and biological integration of the PEEK–cHAp into the tissue. In vivo tests demonstrated that the surface-treated micropores facilitated the adhesion of newly regenerated soft tissues to form tight implant–tissue interfacial bonding between the cHAp and PEEK. The results of the cell culture depicted that PEEK–cHAp exhibited better cell proliferation attachment spreading and higher alkaline phosphatase activity than PEEK alone. Apatite islands formed on the PEEK–cHAp composite after immersion in simulated body fluid of Dulbecco's modified Eagle medium (DMEM) for 14 days and grew continuously with more or extended periods. The microstructure treatment of the crystallinity of PEEK was comparatively and significantly different from the PEEK–cHAp sample, indicating a better treatment of PEEK–cHAp. The in vitro results obtained from the PEEK–cHAp biocomposite material showed its biodegradability and performance suitability for bone implants. This study has potential applications in the field of biomedical engineering to strengthen the conceptual knowledge of FDM and medical implants fabricated from PEEK–cHAp biocomposite materials.en
dc.language.isoeng
dc.relation.ispartofBio-Design and Manufacturing
dc.rightsEmbargoed
dc.subject3D printing
dc.subjectBone implant
dc.subjectComposite morphing
dc.subjectNanostructure
dc.subjectPEEK–cHAp biocomposite
dc.subjectBiotechnology
dc.subjectBiomedical Engineering
dc.subjectMaterials Science (miscellaneous)
dc.subjectIndustrial and Manufacturing Engineering
dc.title3D printing of PEEK–cHAp scaffold for medical bone implanten
dc.contributor.institutionDepartment of Engineering and Technology
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionMaterials and Structures
dc.contributor.institutionCentre for Engineering Research
dc.contributor.institutionCentre for Climate Change Research
dc.description.statusPeer reviewed
dc.date.embargoedUntil2021-10-21
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85093102308&partnerID=8YFLogxK
dc.relation.schoolSchool of Physics, Engineering & Computer Science
dc.description.versiontypeFinal Accepted Version
dcterms.dateAccepted2020-10-21
rioxxterms.versionAM
rioxxterms.versionofrecordhttps://doi.org/10.1007/s42242-020-00098-0
rioxxterms.licenseref.uriUnspecified
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue
herts.rights.accesstypeEmbargoed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record