University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Exploring the robustness of Keplerian signals to the removal of active and telluric features

        View/Open
        2010.11208v1.pdf (PDF, 817Kb)
        Author
        Lisogorskyi, Maksym
        Jones, Hugh R. A.
        Feng, Fabo
        Butler, R. Paul
        Vogt, Steven S.
        Attention
        2299/23432
        Abstract
        We examine the influence of activity- and telluric-induced radial velocity signals on high resolution spectra taken with an iodine absorption cell. We exclude 2 Angstrom spectral chunks containing active and telluric lines based on the well characterised K1V star Alpha Centauri B and illustrate the method on Epsilon Eridani - an active K2V star with a long period low amplitude planetary signal. After removal of the activity- and telluric-sensitive parts of the spectrum from the radial velocity calculation, the significance of the planetary signal is increased and the stellar rotation signal disappears. In order to assess the robustness of the procedure, we perform Monte Carlo simulations based on removing random chunks of the spectrum. Simulations confirm that the removal of lines impacted by activity and tellurics provides a method for checking the robustness of a given Keplerian signal. We also test the approach on HD 40979 which is an active F8V star with a large amplitude planetary signal. Our Monte Carlo simulations reveal that the significance of the Keplerian signal in the F star is much more sensitive to wavelength. Unlike the K star the removal of active lines from the F star greatly reduces the radial velocity precision. In this case, our removal of a K star active lines from an F star does not a provide a simple useful diagnostic because it has far less radial velocity information and heavily relies on the strong active lines.
        Publication date
        2020-10-22
        Published in
        Monthly Notices of the Royal Astronomical Society
        Published version
        https://doi.org/10.1093/mnras/staa3180
        Other links
        http://hdl.handle.net/2299/23432
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan