University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Polymers exhibiting lower critical solution temperatures as a route to thermoreversible gelators for healthcare

        View/Open
        Final Published version (PDF, 4Mb)
        Author
        Cook, Michael T.
        Haddow, Peter
        Kirton, Stewart
        McAuley, William
        Attention
        2299/23500
        Abstract
        The ability to trigger changes to material properties with external stimuli, so-called “smart” behavior, has enabled novel technologies for a wide range of healthcare applications. Response to small changes in temperature is particularly attractive, where material transformations may be triggered by contact with the human body. Thermoreversible gelators are materials where warming triggers reversible phase change from low viscosity polymer solution to a gel state. These systems can be generated by the exploitation of macromolecules with lower critical solution temperatures included in their architectures. The resultant materials are attractive for topical and mucosal drug delivery, as well as for injectables. In addition, the materials are attractive for tissue engineering and 3D printing. The fundamental science underpinning these systems is described, along with progress in each class of material and their applications. Significant opportunities exist in the fundamental understanding of how polymer chemistry and nanoscience describe the performance of these systems and guide the rational design of novel systems. Furthermore, barriers to translating technologies must be addressed, for example, rigorous toxicological evaluation is rarely conducted. As such, applications remain tied to narrow fields, and advancements will be made where the existing knowledge in these areas may be applied to novel problems of science.
        Publication date
        2020-11-20
        Published in
        Advanced Functional Materials
        Published version
        https://doi.org/10.1002/adfm.202008123
        License
        http://creativecommons.org/licenses/by/4.0/
        Other links
        http://hdl.handle.net/2299/23500
        Relations
        School of Life and Medical Sciences
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan