University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Influence of Drill Geometry Design on Drilling-Induced Damage Reduction in Fibre-Reinforced Polymeric Composites

        View/Open
        ACCEPTED_Book_Chapter_02_Dr_Sikiru_O_ISMAIL.pdf (PDF, 1Mb)(embargoed until 18/02/2022)
        Author
        Ismail, S. O.
        Attention
        2299/23589
        Abstract
        Drilling is an extensively used manufacturing process for boring different and widely used fibre-reinforced polymeric (FRP) composite materials, among various machining operations. This process is inevitable for assembling/coupling of parts of systems. Despite of the good inherent properties of the FRP composite materials, they are not easy to drill, due to the dissimilar properties of their constituents (mainly fibre/reinforcement and matrix). More than a few drilling-induced damage (DID) on FRP composites include delamination, surface roughness, fibre-pull out/uncut, among others. They severely affect the quality, structural integrity and applications of the drilled composite components. The most rampant among these damage is delamination; either peel-up or push-out type. Importantly, these damage are frequent and attributed mainly to the geometry design of the drill bits used. It is highly germane to consider and further study the influence of the drill geometry design (DGD) on reduction of DID on FRP composite components and improve the quality of the drilled holes. Therefore, this present chapter focuses on a current status/trend in the drilling of FRP composites and comprehensively reports optimum drill geometry designs (DGDs) for different FRP composites. It was evident that a combination of an efficient drill geometry (chisel and cutting edges, helix and point angles, diameter, length, material, among others) design and suitable selected drilling process parameters (cutting speed, feed rate, depth-of-cut, material removal rate, among others) produced minimum DID on FRP composite components. This knowledge is required to guide drill designers, manufacturers, machinists and researchers in their search for high performance drilling phenomenon.
        Publication date
        2021-02-18
        Published in
        Machining and Machinability of Fibre Reinforced Polymer Composites
        Published version
        https://doi.org/10.1007/978-981-33-4153-1
        Other links
        http://hdl.handle.net/2299/23589
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan