University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Generating photo-realistic training data to improve face recognition accuracy

        View/Open
        accepted_manuscript.pdf (PDF, 6Mb)(embargoed until 27/11/2021)
        Author
        Sáez-Trigueros, Daniel
        Meng, Li
        Hartnett, Margaret
        Attention
        2299/23612
        Abstract
        Face recognition has become a widely adopted biometric in forensics, security and law enforcement thanks to the high accuracy achieved by systems based on convolutional neural networks (CNNs). However, to achieve good performance, CNNs need to be trained with very large datasets which are not always available. In this paper we investigate the feasibility of using synthetic data to augment face datasets. In particular, we propose a novel generative adversarial network (GAN) that can disentangle identity-related attributes from non-identity-related attributes. This is done by training an embedding network that maps discrete identity labels to an identity latent space that follows a simple prior distribution, and training a GAN conditioned on samples from that distribution. A main novelty of our approach is the ability to generate both synthetic images of subjects in the training set and synthetic images of new subjects not in the training set, both of which we use to augment face datasets. By using recent advances in GAN training, we show that the synthetic images generated by our model are photo-realistic, and that training with datasets augmented with those images can lead to increased recognition accuracy. Experimental results show that our method is more effective when augmenting small datasets. In particular, an absolute accuracy improvement of 8.42% was achieved when augmenting a dataset of less than 60k facial images.
        Publication date
        2021-02-01
        Published in
        Neural Networks
        Published version
        https://doi.org/10.1016/j.neunet.2020.11.008
        Other links
        http://hdl.handle.net/2299/23612
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan