Show simple item record

dc.contributor.authorLin, Hairong
dc.contributor.authorWang, Chunhua
dc.contributor.authorYu, Fei
dc.contributor.authorXu, Cong
dc.contributor.authorHong , Qinghui
dc.contributor.authorYao, Wei
dc.contributor.authorSun, Yichuang
dc.date.accessioned2021-01-07T00:09:26Z
dc.date.available2021-01-07T00:09:26Z
dc.date.issued2020-12-31
dc.identifier.citationLin , H , Wang , C , Yu , F , Xu , C , Hong , Q , Yao , W & Sun , Y 2020 , ' An Extremely Simple Multi-Wing Chaotic System: Dynamics Analysis, Encryption Application and Hardware Implementation ' , IEEE Transactions on Industrial Electronics . https://doi.org/10.1109/TIE.2020.3047012
dc.identifier.issn0278-0046
dc.identifier.urihttp://hdl.handle.net/2299/23646
dc.description© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.description.abstractPolynomial functions have been the main barrierrestricting the circuit realization and engineering applicationof multi-wing chaotic systems (MWCSs). To eliminate thisbottleneck, we construct a simple MWCS without polynomialfunctions by introducing a sinusoidal function in a Sprott Csystem. Theoretical analysis and numerical simulations show thatthe MWCS can not only generate multi-butterfly attractors withan arbitrary number of butterflies, but also adjust the numberof the butterflies by multiple ways including self-oscillatingtime, control parameters, and initial states. To further explorethe advantage of the proposed MWCS, we realize its analogcircuit using commercially available electronic elements. Theresults demonstrate that in comparison to traditional MWCSs,our circuit implementation greatly reduces the consumption ofelectronic components. This makes the MWCS more suitablefor many chaos-based engineering applications. Furthermore,we propose an application of the MWCS to chaotic imageencryption. Histogram, correlation, information entropy, and keysensitivity show that the simple image encryption scheme hashigh security and reliable encryption performance. Finally, wedevelop a field-programmable gate array (FPGA) test platformto implement the MWCS-based image cryptosystem. Both the-oretical analysis and experimental results verify the feasibilityand availability of the proposed MWCSen
dc.format.extent3832839
dc.language.isoeng
dc.relation.ispartofIEEE Transactions on Industrial Electronics
dc.titleAn Extremely Simple Multi-Wing Chaotic System: Dynamics Analysis, Encryption Application and Hardware Implementationen
dc.contributor.institutionCentre for Engineering Research
dc.contributor.institutionCommunications and Intelligent Systems
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Engineering and Technology
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.1109/TIE.2020.3047012
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record