University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Experimental and simulation analysis on multi-gate variants in sand casting process

        View/Open
        ACCEPTED_Manuscript_SMEJMP_D_20_00783_Dr_Sikiru_O._ISMAIL.pdf (PDF, 1Mb)
        Author
        Rajkumar, I.
        Rajini, N.
        Alavudeen, A.
        Ram Prabhu, T.
        Ismail, S. O.
        Mohammad, F.
        Al-Lohedan, H. A.
        Attention
        2299/23648
        Abstract
        The present work proposes an improved multi-gate designs (MGDs) in sand casting process, using both experimental and simulation (FLOW 3D) approaches, aiming to produce defect-free component. In this regard, the variant MGDs were developed and compared with the existing designs reported in the previous studies. Accordingly, the following new MGDs: side sprue serial connection (SSSC), centre sprue serial connection (CSSC), side sprue parallel connection (SSPC), centre sprue parallel connection (CSPC) and centre sprue runnerextension parallel connection (CS-RE-PC) were modelled for both techniques. The experimental set-ups were developed for the aforementioned designs to study the flow behaviour of aluminium alloy and water. The validity of aluminium alloy flow characteristics in closed mould condition was checked with the water mould experimentation. The quality of the casting was examined by visual inspection, optical microscopy, ultrasonic and X-ray tests. From the results obtained, it was evident that CS-RE-PC mould set-up or design was most suitable with a runner system for four-cavity application. This design exhibited best flow rate, as a nearly defect-free casting component was produced. Comparison of the FLOW 3D simulation results with similar experimentalfindings provided potential opportunity to reduce both cast product rejection rate and rework, and consequently it aids enhancement of the productivity and profitability in a manufacturing/casting industry.
        Publication date
        2021-02-01
        Published in
        Journal of Manufacturing Processes
        Published version
        https://doi.org/10.1016/j.jmapro.2020.12.006
        Other links
        http://hdl.handle.net/2299/23648
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan