Modeling Affect-Based Relationships and Social Allostasis as Mechanisms for Adaptation in Social Groups
Abstract
Artificial social agents are becoming increasingly present in the real world. For these agents, their success
is tied to their ability to remain truly autonomous—to appropriately adapt their decisions and behaviours
across changing physical and social contexts—and still remains a key area of research in the field of embodied
autonomous agents. Numerous approaches towards models of adaptation have been proposed, including
biologically-inspired models based on the regulation of an agent’s internal environment. A more recent concept from biological systems, called “(social) allostasis”, proposes a mechanism for the anticipatory adaptation of the internal environment through (affect-based) interactions with the (social) environment. Despite the long-term adaptive benefits proposed by social allostasis, current approaches towards models of adaptation for artificial social agents are yet to consider its principles in their approaches. In this manuscript, we address this shortcoming and investigate how mechanisms of social allostasis through affect-based relationships can be used for long-term adaptation of an embodied agent model. Using a biologically-inspired artificial life approach, we systematically investigate numerous hypothesised, hormonal mechanisms that underpin social allostasis and the survival-related benefits associated with affect-based social relationships. We conduct these investigations using a small society of simulated agents across numerous dynamic physical and social contexts. Our results find that adaptation of an embodied agent model through social allostasis mechanisms can provide survival-related advantages across several dynamic conditions in some contexts through physiological and behavioural adaptation. Throughout the manuscript, we also find numerous social interactions and dynamics that mirror biological systems. Our work addresses limitations in current approaches to adaptive models for embodied artificial agents, and presents a novel framework to guide future work in this field. The work also contributes a biologically-inspired artificial life model as a scientific tool to address some methodological challenges in natural systems.
.
.
Publication date
2021-01-29Published version
https://doi.org/10.18745/th.23914https://doi.org/10.18745/th.23914
Funding
Default funderDefault project
Other links
http://hdl.handle.net/2299/23914Metadata
Show full item recordThe following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Click: Exploring Social Actions in the 21st Century
Behrens, Katja Alice (2018-10-22)The phenomenon of social media has become part of our everyday interaction with others. At the heart of this exploration lies the idea that ‘clicks’ on social media are meaningful ways of communicating with others and doing ... -
The Robot Club: Robots as Agents to Improve the Social Skills of Young People on the Autistic Spectrum
Blank, Sarah T (2010-04-12)To better understand the difficulties and strengths associated with both high and low functioning individuals with an autistic spectrum disorder (ASD), the hyper-systemising theory has been proposed by Baron-Cohen and ... -
Using Technology to Support Collaborative Learning Through Assessment Design
Doolan, Martina A (2011-07-28)This thesis offers an assessment design for collaborative learning, utilisation of blended learning support through current communication technologies and highlights the crucial role of the tutor. The thesis designed and ...