University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Retrieval of SDSS J1416+1348AB

        View/Open
        Gonzales_2020_ApJ_905_46.pdf (PDF, 7Mb)
        Author
        Gonzales, Eileen
        Burningham, Ben
        Faherty, Jackie
        Cleary, Colleen
        Visscher, Channon
        Marley, Mark
        Lupu, Roxana
        Freedman, Richard
        Attention
        2299/24060
        Abstract
        We present the distance-calibrated spectral energy distribution (SED) of the d/sdL7 SDSS J14162408+1348263A (J1416A) and an updated SED for SDSS J14162408+1348263B (J1416B). We also present the first retrieval analysis of J1416A using the Brewster retrieval code base and the second retrieval of J1416B. We find that the primary is best fit by a non-grey cloud opacity with a power-law wavelength dependence, but is indistinguishable between the type of cloud parameterization. J1416B is best fit by a cloud-free model, consistent with the results from Line et al. (2017). Most fundamental parameters derived via SEDs and retrievals are consistent within 1 sigma for both J1416A and J1416B. The exceptions include the radius of J1416A, where the retrieved radius is smaller than the evolutionary model-based radius from the SED for the deck cloud model, and the bolometric luminosity which is consistent within 2.5 sigma for both cloud models. The pair's metallicity and Carbon-to-Oxygen (C/O) ratio point towards formation and evolution as a system. By comparing the retrieved alkali abundances while using two opacity models, we are able to evaluate how the opacities behave for the L and T dwarf. Lastly, we find that relatively small changes in composition can drive major observable differences for lower temperature objects.
        Publication date
        2020-12-10
        Published in
        The Astrophysical Journal
        Published version
        https://doi.org/10.3847/1538-4357/abbee2
        Other links
        http://hdl.handle.net/2299/24060
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan