University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Cosmic evolution of the H2 mass density and the epoch of molecular gas

        View/Open
        2103.08613v1.pdf (PDF, 3Mb)
        Author
        Garratt, T. K.
        Coppin, K. E. K.
        Geach, J. E.
        Almaini, O.
        Hartley, W. G.
        Maltby, D. T.
        Simpson, C. J.
        Wilkinson, A.
        Conselice, C. J.
        Franco, M.
        Ivison, R. J.
        Koprowski, M. P.
        Lovell, C. C.
        Pope, A.
        Scott, D.
        Werf, P. van der
        Attention
        2299/24552
        Abstract
        We present new empirical constraints on the evolution of ρ H2, the cosmological mass density of molecular hydrogen, back to z ≈ 2.5. We employ a statistical approach measuring the average observed 850 μm flux density of near-infrared selected galaxies as a function of redshift. The redshift range considered corresponds to a span where the 850 μm band probes the Rayleigh-Jeans tail of thermal dust emission in the rest frame, and can therefore be used as an estimate of the mass of the interstellar medium. Our sample comprises of ≈150,000 galaxies in the UK InfraRed Telescope Infrared Deep Sky Survey Ultra-Deep Survey field with near-infrared magnitudes K AB ≤ 25 mag and photometric redshifts with corresponding probability distribution functions derived from deep 12-band photometry. With a sample approximately 2 orders of magnitude larger than in previous works we significantly reduce statistical uncertainties on ρ H2 to z ≈ 2.5. Our measurements are in broad agreement with recent direct estimates from blank field molecular gas surveys, finding that the epoch of molecular gas coincides with the peak epoch of star formation with ρ H2, 2×107,MȮ Mpc-3at z ≈ 2. We demonstrate that rho; H2, can be broadly modeled by inverting the star formation rate (SFR) density with a fixed or weakly evolving star formation efficiency. This "constant efficiency"model shows a similar evolution to our statistically derived ρ H2,, indicating that the dominant factor driving the peak star formation history at z ≈ 2 is a larger supply of molecular gas in galaxies rather than a significant evolution of the SFR efficiency within individual galaxies.
        Publication date
        2021-05-05
        Published in
        The Astrophysical Journal
        Published version
        https://doi.org/10.3847/1538-4357/abec81
        Other links
        http://hdl.handle.net/2299/24552
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan