University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Measurement report: Balloon-borne in-situ profiling of Saharan dust over Cyprus with the UCASS optical particle counter

        View/Open
        Kezoudi_al_acp_21_6781_2021.pdf (PDF, 4Mb)
        Author
        Kezoudi, Maria
        Tesche, Matthias
        Smith, Helen
        Ulanowski, Zbigniew
        Amiridis, Vassilis
        Mueller, Detlef
        Weinzierl, Bernadett
        Tsekeri, Alexandra
        Baars, Holger
        Dollner, Maximilian
        Estellés, Víctor
        Bühl, Johannes
        Attention
        2299/24869
        Abstract
        This paper presents measurements of mineral dust concentration in the diameter range from 0.4 to 14.0 μm with a novel balloon-borne optical particle counter, the Universal Cloud and Aerosol Sounding System (UCASS). The balloon launches were coordinated with ground-based active and passive remote-sensing observations and airborne in-situ measurements with a research aircraft during a Saharan dust outbreak over Cyprus from 20 to 23 April 2017. The aerosol optical depth at 500 nm reached values up to 0.5 during that event over Cyprus and particle number concentrations were as high as 50 cm−3 for the diameter range between 0.8 and 13.9 μm. Comparisons of the total particle number concentration and the particle size distribution from two cases of balloon-borne measurements with aircraft observations show reasonable agreement in magnitude and shape despite slight mismatches in time and space. While column-integrated size distributions from balloon-borne measurements and ground-based remote sensing show similar coarse-mode peak concentrations and diameters, they illustrate the ambiguity related to the missing vertical information in passive sun photometer observations. Extinction coefficient inferred from the balloon-borne measurements agrees with those derived from coinciding Raman lidar observations at height levels with particle number concentrations smaller than 10 cm−3 for the diameter range from 0.8 to 13.9 μm. An overestimation of the extinction coefficient of a factor of two was found for layers with particle number concentrations that exceed 25 cm−3. This is likely the result of a variation in the refractive index, the shape- and size-dependency of the extinction efficiency of dust particles along the UCASS measurements.
        Publication date
        2021-05-05
        Published in
        Atmospheric Chemistry and Physics
        Published version
        https://doi.org/10.5194/acp-21-6781-2021
        Other links
        http://hdl.handle.net/2299/24869
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan