Show simple item record

dc.contributor.authorSantamaria Ferraro, Evaristo
dc.contributor.authorSeidl, Marina
dc.contributor.authorDe Vuyst, Tom
dc.contributor.authorFaderl, Norbert
dc.date.accessioned2021-08-23T14:58:58Z
dc.date.available2021-08-23T14:58:58Z
dc.date.issued2021-08-18
dc.identifier.citationSantamaria Ferraro , E , Seidl , M , De Vuyst , T & Faderl , N 2021 , ' High-Velocity Impacts of Pyrophoric Alloy Fragments on Thin Armour Steel Plates ' , Materials , vol. 14 , no. 16 , e4649 . https://doi.org/10.3390/ma14164649
dc.identifier.otherJisc: e8c831bd68304ffc9f76179a28f1c70e
dc.identifier.otherORCID: /0000-0002-4372-4055/work/99079156
dc.identifier.urihttp://hdl.handle.net/2299/25002
dc.description.abstractThe terminal ballistics effects of Intermetallic Reactive Materials (IRM) fragments have been the object of intense research in recent years. IRM fragments flying at velocities up to 2000 m/s represent a realistic threat in modern warfare scenarios as these materials are substituting conventional solutions in defense applications. The IRM add Impact Induced Energy Release (IIER) to the mechanical interaction with a target. Therefore, the necessity of investigations on IIER to quantify potential threats to existing protection systems. In this study, Mixed Rare Earths (MRE) fragments were used due to the mechanical and pyrophoric affinity with IRM, the commercial availability and cost-effectiveness. High-Velocity Impacts (HVI) of MRE were performed at velocities ranging from 800 to 1600 m/s and recorded using a high-speed camera. 70 MREs cylindrical fragments and 24 steel fragments were shot on armour steel plates with thicknesses ranging from 2 mm to 3 mm. The influence of the impact pitch angle (α) on HVI outcomes was assessed, defining a threshold value at α of 20°. The influence of the failure modes of MRE and steel fragments on the critical impact velocities (CIV) and critical kinetic energy (Ekin crit) was evaluated. An energy-based model was developed and fitted with sufficient accuracy the Normalised EKin crit (E˜kincrit) determined from the experiments. IIER was observed in all the experiments involving MRE. From the analyses, it was observed that the IIER spreads behind the targets with velocities comparable to the residual velocities of plugs and shattered fragment.en
dc.format.extent7102967
dc.language.isoeng
dc.relation.ispartofMaterials
dc.subjectreactive materials
dc.subjectimpact-induced energy release
dc.subjecthigh-velocity impact
dc.subjectpyrophoric alloys
dc.titleHigh-Velocity Impacts of Pyrophoric Alloy Fragments on Thin Armour Steel Platesen
dc.contributor.institutionSchool of Computer Science
dc.contributor.institutionCentre for Climate Change Research (C3R)
dc.contributor.institutionDepartment of Engineering and Technology
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionMaterials and Structures
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.3390/ma14164649
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record