Show simple item record

dc.contributor.authorBrienza, M.
dc.contributor.authorShimwell, T. W.
dc.contributor.authorGasperin, F. de
dc.contributor.authorBikmaev, I.
dc.contributor.authorBonafede, A.
dc.contributor.authorBotteon, A.
dc.contributor.authorBrüggen, M.
dc.contributor.authorBrunetti, G.
dc.contributor.authorBurenin, R.
dc.contributor.authorCapetti, A.
dc.contributor.authorChurazov, E.
dc.contributor.authorHardcastle, M. J.
dc.contributor.authorKhabibullin, I.
dc.contributor.authorLyskova, N.
dc.contributor.authorR öttgering, H. J. A.
dc.contributor.authorSunyaev, R.
dc.contributor.authorWeeren, R. J. van
dc.contributor.authorGastaldello, F.
dc.contributor.authorMandal, S.
dc.contributor.authorPurser, S.
dc.contributor.authorSimionescu, A.
dc.contributor.authorTasse, C.
dc.date.accessioned2021-10-27T10:15:06Z
dc.date.available2021-10-27T10:15:06Z
dc.date.issued2021-10-18
dc.identifier.citationBrienza , M , Shimwell , T W , Gasperin , F D , Bikmaev , I , Bonafede , A , Botteon , A , Brüggen , M , Brunetti , G , Burenin , R , Capetti , A , Churazov , E , Hardcastle , M J , Khabibullin , I , Lyskova , N , R öttgering , H J A , Sunyaev , R , Weeren , R J V , Gastaldello , F , Mandal , S , Purser , S , Simionescu , A & Tasse , C 2021 , ' A snapshot of the oldest AGN feedback phases ' , Nature Astronomy . https://doi.org/10.1038/s41550-021-01491-0
dc.identifier.issn2397-3366
dc.identifier.otherArXiv: http://arxiv.org/abs/2110.09189v1
dc.identifier.otherORCID: /0000-0003-4223-1117/work/102289328
dc.identifier.urihttp://hdl.handle.net/2299/25151
dc.description© 2021 Springer Nature Limited. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1038/s41550-021-01491-0
dc.description.abstractActive Galactic Nuclei (AGN) inject large amounts of energy into their host galaxies and surrounding environment, shaping their properties and evolution. In particular, AGN jets inflate cosmic-ray lobes, which can rise buoyantly as light `bubbles' in the surrounding medium, displacing and heating the encountered thermal gas and thus halting its spontaneous cooling. These bubbles have been identified in a wide range of systems. However, due to the short synchrotron lifetime of electrons, the most advanced phases of their evolution have remained observationally unconstrained, preventing us to fully understand their coupling with the external medium, and thus AGN feedback. Simple subsonic hydrodynamic models predict that the pressure gradients, naturally present around the buoyantly rising bubbles, transform them into toroidal structures, resembling mushroom clouds in a stratified atmosphere. The way and timescales on which these tori will eventually disrupt depend on various factors including magnetic fields and plasma viscosity. Here we report LOFAR observations below 200 MHz, sensitive to the oldest radio-emitting particles, showing the late evolution of multiple generations of cosmic-ray AGN bubbles in a galaxy group with unprecedented level of detail. The bubbles' buoyancy power can efficiently offset the radiative cooling of the intragroup medium. However, the bubbles have still not thoroughly mixed with the thermal gas, after hundreds of million years, likely under the action of magnetic fields.en
dc.format.extent34
dc.format.extent10760274
dc.language.isoeng
dc.relation.ispartofNature Astronomy
dc.subjectastro-ph.HE
dc.subjectastro-ph.GA
dc.titleA snapshot of the oldest AGN feedback phasesen
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionSPECS Deans Group
dc.contributor.institutionDepartment of Physics, Astronomy and Mathematics
dc.contributor.institutionCentre for Astrophysics Research (CAR)
dc.description.statusPeer reviewed
dc.date.embargoedUntil2022-03-10
rioxxterms.versionofrecord10.1038/s41550-021-01491-0
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record