Show simple item record

dc.contributor.authorGoncharenko, Julia
dc.date.accessioned2022-01-25T11:41:23Z
dc.date.available2022-01-25T11:41:23Z
dc.date.issued2021-12-21
dc.identifier.urihttp://hdl.handle.net/2299/25325
dc.description.abstractThe cerebellum is a prominent brain structure that contains more than half of all neurons, in the brain, which are densely packed and make up 15% of the total brain mass (Andersen et al., 1992). It is well known for its contribution to the control of motor functions, but it also plays a pivotal role in non-motor behaviours. The cerebellum is also involved in numerous pathological conditions. This thesis contributes to the understanding of the pathophysiology of the cerebello-thalamo-cortical pathways. I concentrate on two cerebellar diseases, namely: absence epilepsy (Noebels, 2005) and downbeat nystagmus (DBN) (Strupp et al., 2007). In this thesis the missing link in explaining the alleviating mechanism of a potassium channel blocker on downbeat nystagmus was found. A simulated single biologically detailed floccular target neuron (FTN) model was stimulated by input from cerebellar Purkinje cells (PCs). It was demonstrated that for both synchronised and unsynchronised input, irregular PC spike trains (which resembles the DBN condition) resulted in elevated FTN firing rates, in comparison with regular (4-AP treated) ones. This increase or decrease of the FTN firing rates during DBN, or after 4-AP treatment, respectively depended on short term depression (STD) at the PC - FTN synapses exclusively in the cases when the PC input was unsynchronised. In contrast, results of previous modelling studies (Glasauer et al, 2011; Glasauer and Rossert, 2008) were not in-line with the corresponding experimental findings (Alvina and Khodakhah, 2010) because they did not take into account the STD on the FTN-PC synapses. It was also demonstrated here that the cerebellar output contributes to the control of absence epilepsy that originates in the thalamocortical network. Moreover, the cerebellar input was most effective when it arrived at the peak of the GSWD burst, with the least effective input arriving during the inter-ictal interval, showing clear phase-dependency. I have also shown that a three-fold increase in the inhibitory time constant, drives the asynchronous-irregular network into an ictal state. This increase reflects the GABAA block. A change to GABAB dominated inhibition results in GSWDs, in which the “wave” component is related to the slow GABAB-mediated K+ currents (Destexhe, 1998). Therefore, in this thesis two important contributions are made to the understanding of cerebellar pathological states: absence epilepsy and DBN, which might in turn be useful in the potential treatment of these conditions.  en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectCerebellumen_US
dc.subjectCerebellar nucleien_US
dc.subjectThalamocortical networksen_US
dc.subjectAbsence epilepsyen_US
dc.subjectDownbeat nystagmusen_US
dc.subject4-aminopyridine (4-AP)en_US
dc.subjectShort-term depressionen_US
dc.subjectBiocomputationen_US
dc.subjectComputational modellingen_US
dc.subjectNEURONen_US
dc.subjectPyNNen_US
dc.titleThe Effect of Input from the Cerebellar Nuclei on Activity in Thalamocortical Networksen_US
dc.typeinfo:eu-repo/semantics/doctoralThesisen_US
dc.identifier.doidoi:10.18745/th.25325*
dc.identifier.doi10.18745/th.25325
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhDen_US
dcterms.dateAccepted2021-12-21
rioxxterms.funderDefault funderen_US
rioxxterms.identifier.projectDefault projecten_US
rioxxterms.versionNAen_US
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/en_US
rioxxterms.licenseref.startdate2022-01-25
herts.preservation.rarelyaccessedtrue
rioxxterms.funder.projectba3b3abd-b137-4d1d-949a-23012ce7d7b9en_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess