University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Wideband Back-Cover Antenna Design Using Dual Characteristic Modes With High Isolation for 5G MIMO Smartphone

        View/Open
        Final Accepted Version (PDF, 1Mb)
        Author
        Hu, Wei
        Chen, Zhan
        Qian, Long
        Wen, Lehu
        Luo, Qi
        Xu, Rui
        Jiang, Wen
        Gao, Steven
        Attention
        2299/25343
        Abstract
        A novel method of designing a wideband high isolated dual-antenna pair using dual characteristic modes (CMs)is presented for fifth-generation (5G) multiple-input multiple output (MIMO) smartphone applications. A set of orthogonal CMs resonating from the square-loop slot is first introduced and works for the lower band. Then, another set of orthogonal CMs resonating from the edge branches is introduced with a shared compact radiator and works for the higher band. In combination with two sets of degenerated CMs and a capacitive coupling feeding structure, the proposed dual-antenna pair achieves abroad impedance bandwidth and high isolation without the need for any external decoupling structures. Based on this dual-antenna pair, an 8×8 MIMO array is developed and integrated into the back cover of a smartphone, which realizes zero ground clearance on the system circuit board. To verify the design concept, prototypes of the antenna pair and MIMO array were fabricated and measured. It shows that experimental results agree well with the simulation results. More importantly, the presented 8×8 MIMO array has high isolation of more than 20 dBis achieved across the operating band of 3.3-3.8 GHz.
        Publication date
        2022-01-28
        Published in
        IEEE Transactions on Antennas and Propagation
        Published version
        https://doi.org/10.1109/TAP.2022.3145456
        License
        Unspecified
        Other links
        http://hdl.handle.net/2299/25343
        Relations
        School of Physics, Engineering & Computer Science
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan