University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Raman spectroscopy coupled to computational approaches towards understanding self-assembly in thermoreversible poloxamer gels

        View/Open
        Revised_Manuscript.pdf (PDF, 1Mb)
        Author
        Cook, Michael T.
        Abou Shamat, Mohamad
        Stair, Jacqueline
        Calvo-Castro, Jesus
        Attention
        2299/25355
        Abstract
        The exploitation of vibrational spectroscopy approaches towards the understanding of molecular-level events in polymers, such as poloxamers, is highly warranted. This would facilitate the development of real-time approaches to monitor processes as well as the rational realisation of superior architectures. To date, studies on poloxamer based materials are restricted to low con centration materials and the evaluation of vibrational frequencies involving C-H stretching motions. We carry out an in-depth analysis of thermally-induced micellization processes employing technologically relevant 20% w/w P407 aqueous formulations. Our results, coupling Raman spectroscopy to computational approaches, are unequivocally consistent with such temperature-controlled events not being restricted to molecular re-arrangements involving C-H stretching motions. In fact, the synergistic approach of all key spectral regions was observed to yield optimum delineation of formulations at different temperatures. Vibrational envelopes were deconvoluted and it was observed that vibrational analysis of convoluted spectra can often be misleading. Individual contributions were assigned to either PEO or PPO building blocks by means of quantum-mechanical calculations. Temperature-induced changes to both intensity and vibrational frequencies were statistically evaluated and identified variations rationalised based on intermolecular interactions and structural order/disorder of the polymer units. Such observations were identified to be critically different depending on the nature of the vibrations.
        Publication date
        2022-02-03
        Published in
        Journal of Molecular Liquids
        Published version
        https://doi.org/10.1016/j.molliq.2022.118660
        Other links
        http://hdl.handle.net/2299/25355
        Relations
        School of Life and Medical Sciences
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan