Show simple item record

dc.contributor.authorDavis, F.
dc.contributor.authorKaviraj, S.
dc.contributor.authorHardcastle, M. J.
dc.contributor.authorMartin, G.
dc.contributor.authorJackson, R. A.
dc.contributor.authorKraljic, K.
dc.contributor.authorMalek, K.
dc.contributor.authorPeirani, S.
dc.contributor.authorSmith, D. J. B.
dc.contributor.authorVolonteri, M.
dc.contributor.authorWang, L.
dc.date.accessioned2022-02-15T12:15:02Z
dc.date.available2022-02-15T12:15:02Z
dc.date.issued2022-02-04
dc.identifier.citationDavis , F , Kaviraj , S , Hardcastle , M J , Martin , G , Jackson , R A , Kraljic , K , Malek , K , Peirani , S , Smith , D J B , Volonteri , M & Wang , L 2022 , ' Radio AGN in nearby dwarf galaxies: the important role of AGN in dwarf-galaxy evolution ' , Monthly Notices of the Royal Astronomical Society . https://doi.org/10.1093/mnras/stac068
dc.identifier.issn0035-8711
dc.identifier.otherArXiv: http://arxiv.org/abs/2201.09903v1
dc.identifier.otherORCID: /0000-0001-9708-253X/work/108467448
dc.identifier.otherORCID: /0000-0002-5601-575X/work/108467527
dc.identifier.urihttp://hdl.handle.net/2299/25374
dc.description© 2022 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stac068
dc.description.abstractWe combine deep optical and radio data, from the Hyper Suprime-Cam and the Low-Frequency Array (LOFAR) respectively, to study 78 radio AGN in nearby (z < 0.5) dwarf galaxies. Comparison to a control sample, matched in stellar mass and redshift, indicates that the AGN and controls reside in similar environments, show similar star-formation rates (which trace gas availability) and exhibit a comparable incidence of tidal features (which indicate recent interactions). We explore the AGN properties by combining the predicted gas conditions in dwarfs from a cosmological hydrodynamical simulation with a Monte Carlo suite of simulated radio sources, based on a semi-analytical model for radio-galaxy evolution. In the subset of LOFAR-detectable simulated sources, which have a similar distribution of radio luminosities as our observed AGN, the median jet powers, ages and accretion rates are ∼1035 W, ∼5 Myr and ∼10−3.4 M⊙ yr−1 respectively. The median mechanical energy output of these sources is ∼100 times larger than the median binding energy expected in dwarf gas reservoirs, making AGN feedback plausible. Since special circumstances (in terms of environment, gas availability and interactions) are not necessary for the presence of AGN, and the central gas masses are predicted to be an order of magnitude larger than that required to fuel the AGN, AGN triggering in dwarfs is likely to be stochastic and a common phenomenon. Together with the plausibility of energetic feedback, this suggests that AGN could be important drivers of dwarf-galaxy evolution, as is the case in massive galaxies.en
dc.format.extent14
dc.format.extent1948651
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society
dc.subjectastro-ph.GA
dc.subjectastro-ph.HE
dc.titleRadio AGN in nearby dwarf galaxies: the important role of AGN in dwarf-galaxy evolutionen
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionCentre for Astrophysics Research
dc.contributor.institutionCentre of Data Innovation Research
dc.contributor.institutionDepartment of Physics, Astronomy and Mathematics
dc.contributor.institutionSPECS Deans Group
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.1093/mnras/stac068
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record