University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Time‐lapse photogrammetry reveals hydrological controls of fine‐scale High‐Arctic glacier surface roughness evolution

        View/Open
        Final Published version (PDF, 6Mb)
        Author
        Irvine‐Fynn, Tristram D. L.
        Holt, Tom O.
        James, Timothy D.
        Smith, Mark W.
        Rutter, Nick
        Porter, Philip R.
        Hodson, Andrew J.
        Attention
        2299/25397
        Abstract
        In a warming Arctic, as glacier snowlines rise, short‐ to medium‐term increases in seasonal bare‐ice extent are forecast for the next few decades. These changes will enhance the importance of turbulent energy fluxes for surface ablation and glacier mass balance. Turbulent energy exchanges at the ice surface are conditioned by its topography, or roughness, which has been hypothesized to be controlled by supraglacial hydrology at the glacier scale. However, current understanding of the dynamics in surface topography, and the role of drainage development, remains incomplete, particularly for the transition between seasonal snow cover and well‐developed, weathered bare‐ice. Using time‐lapse photogrammetry, we report a daily timeseries of fine (millimetre)‐scale supraglacial topography at a 2 m2 plot on the Lower Foxfonna glacier, Svalbard, over two 9‐day periods in 2011. We show traditional kernel‐based morphometric descriptions of roughness were ineffective in describing temporal change, but indicated fine‐scale albedo feedbacks at depths of ~60 mm contributed to conditioning surface topography. We found profile‐based and two‐dimensional estimates of roughness revealed temporal change, and the aerodynamic roughness parameter, z0, showed a 22–32% decrease from ~1 mm following the exposure of bare‐ice, and a subsequent 72–77% increase. Using geostatistical techniques, we identified ‘hole effect’ properties in the surface elevation semivariograms, and demonstrated that hydrological drivers control the plot‐scale topography: degradation of superimposed ice reduces roughness while the inception of braided rills initiates a subsequent development and amplification of topography. Our study presents an analytical framework for future studies that interrogate the coupling between ice surface roughness and hydro‐meteorological variables and seek to improve parameterizations of topographically evolving bare‐ice areas.
        Publication date
        2022-02-23
        Published in
        Earth Surface Processes and Landforms
        Published version
        https://doi.org/10.1002/esp.5339
        License
        http://creativecommons.org/licenses/by-nc/4.0/
        Other links
        http://hdl.handle.net/2299/25397
        Relations
        School of Life and Medical Sciences
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan